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Preface

This book is intended for students of the physical sciences, especially physics, who
have already studied some mechanics as part of an introductory physics course (“fresh-
man physics” at a typical American university) and are now ready for a deeper look at
the subject. The book grew out of the junior-level mechanics course which is offered
by the Physics Department at Colorado and is taken mainly by physics majors, but
also by some mathematicians, chemists, and engineers. Almost all of these students
have taken a year of freshman physics, and so have at least a nodding acquaintance
with Newton’s laws, energy and momentum, simple harmonic motion, and so on. In
this book I build on this nodding acquaintance to give a deeper understanding of these
basic ideas, and then go on to develop more advanced topics, such as the Lagrangian
and Hamiltonian formulations, the mechanics of noninertial frames, motion of rigid
bodies, coupled oscillators, chaos theory, and a few more.

Mechanics is, of course, the study of how things move — how an electron moves
down your TV tube, how a baseball flies through the air, how a comet moves round the
sun. Classical mechanics is the form of mechanics developed by Galileo and Newton in
the seventeenth century and reformulated by Lagrange and Hamilton in the eighteenth
and nineteenth centuries. For more than two hundred years, it seemed that classical
mechanics was the only form of mechanics, that it could explain the motion of all
conceivable systems.

Then, in two great revolutions of the early twentieth century, it was shown that
classical mechanics cannot account for the motion of objects traveling close to the
speed of light, nor of subatomic particles moving inside atoms. The years from about
1900 to 1930 saw the development of relativistic mechanics primarily to describe fast-
moving bodies and of quantum mechanics primarily to describe subatomic systems.
Faced with this competition, one might expect classical mechanics to have lost much
of its interest and importance. In fact, however, classical mechanics is now, at the start
of the twenty-first century, just as important and glamorous as ever. This resilience is
due to three facts: First, there are just as many interesting physical systems as ever
that are best described in classical terms. To understand the orbits of space vehicles
and of charged particles in modern accelerators, you have to understand classical
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mechanics. Second, recent developments in classical mechanics, mainly associated
with the growth of chaos theory, have spawned whole new branches of physics and
mathematics and have changed our understanding of the notion of causality. It is these
new ideas that have attracted some of the best minds in physics back to the study of
classical mechanics. Third, it is as true today as ever that a good understanding of
classical mechanics is a prerequisite for the study of relativity and quantum mechanics.

Physicists tend to use the term “classical mechanics” rather loosely. Many use it
for the mechanics of Newton, Lagrange, and Hamilton; for these people, “classical
mechanics” excludes relativity and quantum mechanics. On the other hand, in some
areas of physics, there is a tendency to include relativity as a part of “classical me-
chanics”; for people of this persuasion, “classical mechanics” means “non-quantum
mechanics.” Perhaps as a reflection of this second usage, some courses called “clas-
sical mechanics” include an introduction to relativity, and for the same reason, I have
included one chapter on relativistic mechanics, which you can use or not, as you
please.

An attractive feature of a course in classical mechanics is that it is a wonderful
opportunity to learn to use many of the mathematical techniques needed in so many
other branches of physics — vectors, vector calculus, differential equations, complex
numbers, Taylor series, Fourier series, calculus of variations, and matrices. I have
tried to give at least a minimal review or introduction for each of these topics (with
references to further reading) and to teach their use in the usually quite simple context
of classical mechanics. I hope you will come away from this book with an increased
confidence that you can really use these important tools.

Inevitably, there is more material in the book than could possibly be covered in a
one-semester course. I have tried to ease the pain of choosing what to omit. The book
is divided into two parts: Part I contains eleven chapters of “essential” material that
should be read pretty much in sequence, while Part II contains five “further topics”
that are mutually independent and any of which can be read without reference to the
others. This division is naturally not very clear cut, and how you use it depends on your
preparation (or that of your students). In our one-semester course at the University of
Colorado, I found I needed to work steadily through most of Part I, and I only covered
Part II by having students choose one of its chapters to study as a term project. (An
activity they seemed to enjoy.) Some of the professors who taught from a preliminary
version of the book found their students sufficiently well prepared that they could
relegate the first four or five chapters to a quick review, leaving more time to cover
some of Part II. At schools where the mechanics course lasts two quarters, it proved
possible to cover all of Part I and much of Part II as well.

Because the chapters of Part II are mutually independent, it is possible to cover
some of them before you finish Part I. For example, Chapter 12 on chaos could be
covered immediately after Chapter 5 on oscillations, and Chapter 13 on Hamiltonian
mechanics could be read immediately after Chapter 7 on Lagrangian mechanics. A
number of sections are marked with an asterisk to indicate that they can be omitted
without loss of continuity. (This is not to say that this material is unimportant. I
certainly hope you’ll come back and read it later!)

As always in a physics text, it is crucial that you do lots of the exercises at the
end of each chapter. I have included a large number of these to give both teacher and
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student plenty of choice. Some of them are simple applications of the ideas of the
chapter and some are extensions of those ideas. I have listed the problems by section,
so that as soon as you have read any given section you could (and probably should) try
a few problems listed for that section. (Naturally, problems listed for a given section
usually require knowledge of earlier sections. I promise only that you shouldn’t need
material from later sections.) I have tried to grade the problems to indicate their level
of difficulty, ranging from one star (x), meaning a straightforward exercise usually
involving just one main concept, to three stars (x*x*), meaning a challenging problem
that involves several concepts and will probably take considerable time and effort. This
kind of classification is quite subjective, very approximate, and surprisingly difficult
to make; I would welcome suggestions for any changes you think should be made.

Several of the problems require the use of computers to plot graphs, solve differ-
ential equations, and so on. None of these requires any specific software; some can
be done with a relatively simple system such as MathCad or even just a spreadsheet
like Excel; some require more sophisticated systems, such as Mathematica, Maple,
or Matlab. (Incidentally, it is my experience that the course for which this book was
written is a wonderful opportunity for the students to learn to use one of these fabu-
lously useful systems.) Problems requiring the use of a computer are indicated thus:
[Computer]. I have tended to grade them as »xx or at least *x on the grounds that
it takes a lot of time to set up the necessary code. Naturally, these problems will be
easier for students who are experienced with the necessary software.

Each chapter ends with a summary called “Principal Definitions and Equations
of Chapter xx.” I hope these will be useful as a check on your understanding of the
chapter as you finish reading it and as a reference later on, as you try to find that
formula whose details you have forgotten.

There are many people I wish to thank for their help and suggestions. At the Uni-
versity of Colorado, these include Professors Larry Baggett, John Cary, Mike Dubson,
Anatoli Levshin, Scott Parker, Steve Pollock, and Mike Ritzwoller. From other institu-
tions, the following professors reviewed the manuscript or used a preliminary edition
in their classes:

Meagan Aronson, U of Michigan

Dan Bloom, Kalamazoo College
Peter Blunden, U of Manitoba
Andrew Cleland, UC Santa Barbara
Gayle Cook, Cal Poly, San Luis Obispo
Joel Fajans, UC Berkeley

Richard Fell, Brandeis University
Gayanath Fernando, U of Connecticut
Jonathan Friedman, Ambherst College
David Goldhaber-Gordon, Stanford
Thomas Griffy, U of Texas

Elisabeth Gwinn, UC Santa Barbara
Richard Hilt, Colorado College
George Horton, Rutgers

Lynn Knutson, U of Wisconsin
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Jonathan Maps, U of Minnesota, Duluth
John Markert, U of Texas

Michael Moloney, Rose-Hulman Institute
Colin Morningstar, Carnegie Mellon
Declan Mulhall, Cal Poly, San Luis Obispo
Carl Mungan, US Naval Academy

Robert Pompi, SUNY Binghamton

Mark Semon, Bates College

James Shepard, U of Colorado

Richard Sonnenfeld, New Mexico Tech
Edward Stern, U of Washington

Michael Weinert, U of Wisconsin, Milwaukee
Alma Zook, Pomona College

I am most grateful to all of these and their students for their many helpful comments.
I would particularly like to thank Carl Mungan for his amazing vigilance in catching
typos, obscurites, and ambiguities, and Jonathan Friedman and his student, Ben
Heidenreich, who saved me from a really embarassing mistake in Chapter 10. I am
especially grateful to my two friends and colleagues, Mark Semon at Bates College
and Dave Goodmanson at the Boeing Aircraft Company, both of whom reviewed the
manuscript with the finest of combs and gave me literally hundreds of suggestions;
likewise to Christopher Taylor of the University of Wisconsin for his patient help
with Mathematica and the mysteries of Latex. Bruce Armbruster and Jane Ellis of
University Science Books are an author’s dream come true. My copy editor, Lee
Young, is a rarity indeed, an expert in English usage and physics; he suggested many
significant improvements. Finally and most of all, I want to thank my wife Debby.
Being married to an author can be very trying, and she puts up with it most graciously.
And, as an English teacher with the highest possible standards, she has taught me most
of what I know about writing and editing. I am eternally grateful.

For all our efforts, there will surely be several errors in this book, and I would
be most grateful if you could let me know of any that you find. Ancillary material,
including an instructors’ manual, and other notices will be posted at the University
Science Books website, www.uscibooks.com.

John R. Taylor

/ Department of Physics
University of Colorado
Boulder, Colorado 80309, USA
John.Taylor@Colorado.edu
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Part I of this book contains material that almost everyone would consider essential
knowledge for an undergraduate physics major. Part Il contains optional further topics
from which you can pick according to your tastes and available time. The distinction
between “essential” and “optional” is, of course, arguable, and its impact on you, the
reader, depends very much on your state of preparation. For example, if you are well
prepared, you might decide that the first five chapters of Part I can be treated as a quick
review, or even skipped entirely. As a practical matter, the distinction is this: The eleven
chapters of Part I were designed to be read in sequence, and in writing each chapter, |
assumed that you would be familiar with most of the ideas of the preceding chapters —
either by reading them or because you had met them elsewhere. By contrast, I tried to
make the chapters of Part Il independent of one another, so that you could read any
of them in any order, once you knew most of the material of Part I.






CHAPTER

Newton’s Laws of Motion

1.1 Classical Mechanics

Mechanics is the study of how things move: how planets move around the sun, how a
skier moves down the slope, or how an electron moves around the nucleus of an atom.
So far as we know, the Greeks were the first to think seriously about mechanics, more
than two thousand years ago, and the Greeks’ mechanics represents a tremendous step
in the evolution of modern science. Nevertheless, the Greek ideas were, by modern
standards, seriously flawed and need not concern us here. The development of the
mechanics that we know today began with the work of Galileo (1564-1642) and
Newton (1642—-1727), and it is the formulation of Newton, with his three laws of
motion, that will be our starting point in this book.

In the late eighteenth and early nineteenth centuries, two alternative formulations
of mechanics were developed, named for their inventors, the French mathematician
and astronomer Lagrange (1736—1813) and the Irish mathematician Hamilton (1805—
1865). The Lagrangian and Hamiltonian formulations of mechanics are completely
equivalent to that of Newton, but they provide dramatically simpler solutions to
many complicated problems and are also the taking-off point for various modern
developments. The term classical mechanics is somewhat vague, but it is generally
understood to mean these three equivalent formulations of mechanics, and it is in this
sense that the subject of this book is called classical mechanics.

Until the beginning of the twentieth century, it seemed that classical mechanics
was the only kind of mechanics, correctly describing all possible kinds of motion.
Then, in the twenty years from 1905 to 1925, it became clear that classical mechanics
did not correctly describe the motion of objects moving at speeds close to the speed of
light, nor that of the microscopic particles inside atoms and molecules. The result was
the development of two completely new forms of mechanics: relativistic mechanics
to describe very high-speed motions and quantum mechanics to describe the motion
of microscopic particles. I have included an introduction to relativity in the “optional”
Chapter 15. Quantum mechanics requires a whole separate book (or several books),
and I have made no attempt to give even a brief introduction to quantum mechanics. 3
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Although classical mechanics has been replaced by relativistic mechanics and by
quantum mechanics in their respective domains, there is still a vast range of interesting
and topical problems in which classical mechanics gives a complete and accurate
description of the possible motions. In fact, particularly with the advent of chaos
theory in the last few decades, research in classical mechanics has intensified and the
subject has become one of the most fashionable areas in physics. The purpose of this
book is to give a thorough grounding in the exciting field of classical mechanics. When
appropriate, I shall discuss problems in the framework of the Newtonian formulation,
but I shall also try to emphasize those situations where the newer formulations of
Lagrange and Hamilton are preferable and to use them when this is the case. At
the level of this book, the Lagrangian approach has many significant advantages
over the Newtonian, and we shall be using the Lagrangian formulation repeatedly,
starting in Chapter 7. By contrast, the advantages of the Hamiltonian formulation
show themselves only at a more advanced level, and I shall postpone the introduction
of Hamiltonian mechanics to Chapter 13 (though it can be read at any point after
Chapter 7).

In writing the book, I took for granted that you have had an introduction to
Newtonian mechanics of the sort included in a typical freshman course in “General
Physics.” This chapter contains a brief review of the ideas that I assume you have met
before.

1.2 Space and Time

Newton’s three laws of motion are formulated in terms of four crucial underlying
concepts: the notions of space, time, mass, and force. This section reviews the first
two of these, space and time. In addition to a brief description of the classical view
of space and time, I give a quick review of the machinery of vectors, with which we
label the points of space.

Space

Each point P of the three-dimensional space in which we live can be labeled by a
position vector r which specifies the distance and direction of P from a chosen origin
O as in Figure 1.1. There are many different ways to identify a vector, of which one
of the most natural is to give its components (x, y, z) in the directions of three chosen
perpendicular axes. One popular way to express this is to introduce three unit vectors,
X, ¥, Z, pointing along the three axes and to write

r=xX+yy+ zZ. (1.1)

In elementary work, it is probably wise to choose a single good notation, such as (1.1),
and stick with it. In more advanced work, however, it is almost impossible to avoid
using several different notations. Different authors have different preferences (another
popular choice is to use i, j, k for what I am calling X, ¥, Z) and you must get used
to reading them all. Furthermore, almost every notation has its drawbacks, which can
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Z axis

z axis
0 Yy
/ ;

X axis

Figure 1.1 The point P is identified by its position vector r,
which gives the position of P relative to a chosen origin O. The
vector r can be specified by its components (x, y, z) relative to
chosen axes Oxyz.

make it unusable in some circumstances. Thus, while you may certainly choose your
preferred scheme, you need to develop a tolerance for several different schemes.
It is sometimes convenient to be able to abbreviate (1.1) by writing simply

r=(x,y,z). (1.2)

This notation is obviously not quite consistent with (1.1), but it is usually completely
unambiguous, asserting simply that r is the vector whose components are x, y, z.
When the notation of (1.2) is the most convenient, I shall not hesitate to use it. For
most vectors, we indicate the components by subscripts x, y, z. Thus the velocity
vector v has components v,, vy, v, and the acceleration a has components a,, a,, .

As our equations become more complicated, it is sometimes inconvenient to write
out all three terms in sums like (1.1); one would rather use the summation sign »
followed by a single term. The notation of (1.1) does not lend itself to this shorthand,
and for this reason I shall sometimes relabel the three components x, y,z of r as
r1, ¥, 3, and the three unit vectors X, ¥, Z as €, e,, e;. That is, we define

r=x, =1y, ry =z,
and
e, =X, e =Y, e;=1.
(The symbol e is commonly used for unit vectors, since e stands for the German “eins”

or “one.”) With these notations, (1.1) becomes

3
r:r1e1+r2e2+r3e3=Zriei. (13)

i=l

For a simple equation like this, the form (1.3) has no real advantage over (1.1), but
with more complicated equations (1.3) is significantly more convenient, and I shall
use this notation when appropriate.
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Vector Operations

In our study of mechanics, we shall make repeated use of the various operations that
can be performed with vectors. If r and s are vectors with components

r = (ry, ry,r3) and S = (51, 52, 83),

then their sum (or resultant) r + s is found by adding corresponding components, so
that

r+s= (481, ry + 55, 13 + 83). (1.4)

(You can convince yourself that this rule is equivalent to the familiar triangle and
parallelogram rules for vector addition.) An important example of a vector sum is the
resultant force on an object: When two forces F, and F, act on an object, the effect
is the same as a single force, the resultant force, which is just the vector sum

F:Fa+Fb

as given by the vector addition law (1.4).
If ¢ is a scalar (that is, an ordinary number) and r is a vector, the product cr is
given by

cr = (cry, cry, Cr3). (1.5)

This means that cr is a vector in the same direction! as r with magnitude equal to
¢ times the magnitude of r. For example, if an object of mass m (a scalar) has an
acceleration a (a vector), Newton’s second law asserts that the resultant force F on
the object will always equal the product ma as given by (1.5).

There are two important kinds of product that can be formed from any pair of
vectors. First, the scalar product (or dot product) of two vectors r and s is given by
either of the equivalent formulas

r-s=rscosé (1.6)
3
=S| + 1Sy + 1383 = Z ¥ Sy (1.7)
n=1

where r and s denote the magnitudes of the vectors r and s, and 6 is the angle between
them. (For a proof that these two definitions are the same, see Problem 1.7.) For
example, if a force F acts on an object that moves through a small displacement dr,
the work done by the force is the scalar product F - dr, as given by either (1.6) or (1.7).
Another important use of the scalar product is to define the magnitude of a vector:
The magnitude (or length) of any vector r is denoted by |r| or r and, by Pythagoras’s

theorem is equal to /r2 + r + r2. By (1.7) this is the same as

The scalar product r - r is often abbreviated as r.

! Although this is what people usually say, one should actually be careful: If ¢ is negative, cr is
in the opposite direction to r.
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The second kind of product of two vectors r and s is the vector product (or cross
product), which is defined as the vector p = r x s with components

Px =TyS; _rzsy
Py =78, — I'sS, (1.9)
Pz =TSy — ISy

or, equivalently
y
y

X
rxs=det| r,
Sy Sy

Z
r, r,|,
Sy S,
where “det” stands for the determinant. Either of these definitions implies thatr x sis
a vector perpendicular to both r and s, with direction given by the familiar right-hand
rule and magnitude rs sin 6 (Problem 1.15). The vector product plays an important
role in the discussion of rotational motion. For example, the tendency of a force F
(acting at a point r) to cause a body to rotate about the origin is given by the torque
of F about O, defined as the vector product I' =r x F.

Differentiation of Vectors

Many (maybe most) of the laws of physics involve vectors, and most of these involve
derivatives of vectors. There are so many ways to differentiate a vector that there is
a whole subject called vector calculus, much of which we shall be developing in the
course of this book. For now, I shall mention just the simplest kind of vector derivative,
the time derivative of a vector that depends on time. For example, the velocity v(z)
of a particle is the time derivative of the particle’s position r(¢); that is, v = dr/dt.
Similarly the acceleration is the time derivative of the velocity, a = dv/dt.
The definition of the derivative of a vector is closely analogous to that of a scalar.

Recall that if x(¢) is a scalar function of ¢, then we define its derivative as

dx . Ax

— = lim —

dt At—>0 At
where Ax = x(t + At) — x(¢) is the change in x as the time advances from ¢ to
t 4+ At. In exactly the same way, if r(¢) is any vector that depends on ¢, we define its
derivative as

ar _ im 2T (1.10)
dt At—0 At
where
Ar =1(t + At) —r(t) (1.11)

is the corresponding change in r(¢). There are, of course, many delicate questions
about the existence of this limit. Fortunately, none of these need concern us here:
All of the vectors we shall encounter will be differentiable, and you can take for
granted that the required limits exist. From the definition (1.10), one can prove that
the derivative has all of the properties one would expect. For example, if r(¢) and s(¢)

7
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are two vectors that depend on #, then the derivative of their sum is just what you
would expect:

%(r—ks):— —. (1.12)

Similarly, if r(¢) is a vector and f(¢) is a scalar, then the derivative of the product
f(@®)r(z) is given by the appropriate version of the product rule,

d dr df

a't(fr)_fdt + " r. (1.13)
If you are the sort of person who enjoys proving these kinds of proposition, you might
want to show that they follow from the definition (1.10). Fortunately, if you do not
enjoy this kind of activity, you don’t need to worry, and you can safely take these
results for granted.

One more result that deserves mention concerns the components of the derivative -
of a vector. Suppose that r, with components x, y, z, is the position of a moving
particle, and suppose that we want to know the particle’s velocity v = dr/dt. When
we differentiate the sum

r=xX+ yy + zz, (1.14)

the rule (1.12) gives us the sum of the three separate derivatives, and, by the product
rule (1.13), each of these contains two terms. Thus, in principle, the derivative of
(1.14) involves six terms in all. However, the unit vectors X, ¥, and Z do not depend on
time, so their time derivatives are zero. Therefore, three of these six terms are zero,
and we are left with just three terms:

dr dx. dy. dz.

LS S (1.15)

dt dt dt dt
Comparing this with the standard expansion

V=0X+v,§+ v,Z

we see that

_a'x _d_y

dx ’ _dz
Tt YT dr’

and v, = —.
dt

v, (1.16)
In words, the rectangular components of v are just the derivatives of the corresponding
components of r. This is a result that we use all the time (usually without even think-
ing about it) in solving elementary mechanics problems. What makes it especially
noteworthy is this: It is true only because the unit vectors X, ¥, and Z are constant,
so that their derivatives are absent from (1.15). We shall find that in most coordinate
systems, such as polar coordinates, the basic unit vectors are not constant, and the
result corresponding to (1.16) is appreciably less transparent. In problems where we
need to work in nonrectangular coordinates, it is considerably harder to write down

velocities and accelerations in terms of the coordinates of r, as we shall see.
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Time

The classical view is that time is a single universal parameter ¢ on which all observers
agree. That is, if all observers are equipped with accurate clocks, all properly syn-
chronized, then they will all agree as to the time at which any given event occurred.
We know, of course, that this view is not exactly correct: According to the theory of
relativity, two observers in relative motion do not agree on all times. Nevertheless,
in the domain of classical mechanics, with all speeds much much less than the speed
of light, the differences among the measured times are entirely negligible, and I shall
adopt the classical assumption of a single universal time (except, of course, in Chap-
ter 15 on relativity). Apart from the obvious ambiguity in the choice of the origin of
time (the time that we choose to label t = 0), all observers agree on the times of all
events.

Reference Frames

Almost every problem in classical mechanics involves a choice (explicit or implicit)
of a reference frame, that is, a choice of spatial origin and axes to label positions as in
Figure 1.1 and a choice of temporal origin to measure times. The difference between
two frames may be quite minor. For instance, they may differ only in their choice
of the origin of time — what one frame labels ¢ = 0 the other may label t' =7, # 0.
Or the two frames may have the same origins of space and time, but have different
orientations of the three spatial axes. By carefully choosing your reference frame,
taking advantage of these different possibilities, you can sometimes simplify your
work. For example, in problems involving blocks sliding down inclines, it often helps
to choose one axis pointing down the slope.

A more important difference arises when two frames are in relative motion; that
1s, when one origin is moving relative to the other. In Section 1.4 we shall find that not
all such frames are physically equivalent.? In certain special frames, called inertial
frames, the basic laws hold true in their standard, simple form. (It is because one of
these basic laws is Newton’s first law, the law of inertia, that these frames are called
inertial.) If a second frame is accelerating or rotating relative to an inertial frame,
then this second frame is noninertial, and the basic laws — in particular, Newton’s
laws — do not hold in their standard form in this second frame. We shall find that
the distinction between inertial and noninertial frames is central to our discussion of
classical mechanics. It plays an even more explicit role in the theory of relativity.

1.3 Mass and Force

The concepts of mass and force are central to the formulation of classical mechanics.
The proper definitions of these concepts have occupied many philosophers of science
and are the subject of learned treatises. Fortunately we don’t need to worry much about

2 This statement is correct even in the theory of relativity.
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rod

string force

Figure 1.2 An inertial balance compares the masses m, and m,
of two objects that are attached to the opposite ends of a rigid rod.
The masses are equal if and only if a force applied at the rod’s
midpoint causes them to accelerate at the same rate, so that the
rod does not rotate.

these delicate questions here. Based on your introductory course in general physics,
you have a reasonably good idea what mass and force mean, and it is easy to describe
how these parameters are defined and measured in many realistic situations.

Mass

The mass of an object characterizes the object’s inertia— its resistance to being
accelerated: A big boulder is hard to accelerate, and its mass is large. A little stone
is easy to accelerate, and its mass is small. To make these natural ideas quantitative
we have to define a unit of mass and then give a prescription for measuring the mass
of any object in terms of the chosen unit. The internationally agreed unit of mass is
the kilogram and is defined arbitrarily to be the mass of a chunk of platinum—-iridium
stored at the International Bureau of Weights and Measures outside Paris. To measure
the mass of any other object, we need a means of comparing masses. In principle, this
can be done with an inertial balance as shown in Figure 1.2. The two objects to be
compared are fastened to the opposite ends of a light, rigid rod, which is then given
a sharp pull at its midpoint. If the masses are equal, they will accelerate equally and
the rod will move off without rotating; if the masses are unequal, the more massive
one will accelerate less, and the rod will rotate as it moves off.

The beauty of the inertial balance is that it gives us a method of mass comparison
that is based directly on the notion of mass as resistance to being accelerated. In
practice, an inertial balance would be very awkward to use, and it is fortunate that
there are much easier ways to compare masses, of which the easiest is to weigh the
objects. As you certainly recall from your introductory physics course, an object’s
mass is found to be exactly proportional to the object’s weight? (the gravitational force
on the object) provided all measurements are made in the same location. Thus two

3This observation goes back to Galileo’s famous experiments showing that all objects are
accelerated at the same rate by gravity. The first modern experiments were conducted by the
Hungarian physicist E6tvos (1848-1919), who showed that weight is proportional to mass to within
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objects have the same mass if and only if they have the same weight (when weighed
at the same place), and a simple, practical way to check whether two masses are equal
is simply to weigh them and see if their weights are equal.

Armed with methods for comparing masses, we can easily set up a scheme to mea-
sure arbitrary masses. First, we can build a large number of standard kilograms, each
one checked against the original 1-kg mass using either the inertial or gravitational
balance. Next, we can build multiples and fractions of the kilogram, again checking
them with our balance. (We check a 2-kg mass on one end of the balance against
two 1-kg masses placed together on the other end; we check two half-kg masses by
verifying that their masses are equal and that together they balance a 1-kg mass; and
so on.) Finally, we can measure an unknown mass by putting it on one end of the
balance and loading known masses on the other end until they balance to any desired
precision.

Force

The informal notion of force as a push or pull is a surprisingly good starting point
for our discussion of forces. We are certainly conscious of the forces that we exert
ourselves. When I hold up a sack of cement, I am very aware that I am exerting
an upward force on the sack; when I push a heavy crate across a rough floor, I am
aware of the horizontal force that I have to exert in the direction of motion. Forces
exerted by inanimate objects are a little harder to pin down, and we must, in fact,
understand something of Newton’s laws to identify such forces. If I let go of the sack
of cement, it accelerates toward the ground; therefore, I conclude that there must be
another force — the sack’s weight, the gravitational force of the earth — pulling it
downward. As I push the crate across the floor, I observe that it does not accelerate,
and I conclude that there must be another force — friction — pushing the crate in the
opposite direction. One of the most important skills for the student of elementary
mechanics is to learn to examine an object’s environment and identify all the forces
on the object: What are the things touching the object and possibly exerting contact
forces, such as friction or air pressure? And what are the nearby objects possibly
exerting action-at-a-distance forces, such as the gravitational pull of the earth or the
electrostatic force of some charged body?

If we accept that we know how to identify forces, it remains to decide how to
measure them. As the unit of force we naturally adopt the newton (abbreviated N)
defined as the magnitude of any single force that accelerates a standard kilogram
mass with an acceleration of 1 m/s?. Having agreed what we mean by one newton,
we can proceed in several ways, all of which come to the same final conclusion,
of course. The route that is probably preferred by most philosophers of science is
to use Newton’s second law to define the general force: A given force is 2 N if]
by itself, it accelerates a standard kilogram with an acceleration of 2 m/ s2, and so

a few parts in 10°. Experiments in the last few decades have narrowed this to around one part in
1012,
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pivot

balance arm

Figure 1.3 One of many possible ways to define forces of any
magnitude. The lower spring balance has been calibrated to read
1 N. If the balance arm on the left is adjusted so that the lever arms
above and below the pivot are in the ratio 1 : 2 and if the force Fj is
1 N, then the force F, required to balance the arm is 2 N. This lets
us calibrate the upper spring balance for 2 N. By readjusting the two
lever arms, we can, in principle, calibrate the second spring balance
to read any force.

on. This approach is not much like the way we usually measure forces in practice,*

and for our present discussion a simpler procedure is to use some spring balances.
Using our definition of the newton, we can calibrate a first spring balance to read
1 N. Then by matching a second spring balance against the first, using a balance
arm as shown in Figure 1.3, we can define multiples and fractions of a newton.
Once we have a fully calibrated spring balance we can, in principle, measure any
unknown force, by matching it against the calibrated balance and reading off its
value.

So far we have defined only the magnitude of a force. As you are certainly aware,
forces are vectors, and we must also define their directions. This is easily done. If we
apply a gj\;en force F (and no other forces) to any object at rest, the direction of F is
defined as the direction of the resulting acceleration, that is, the direction in which the
body moves off.

Now that we know, at least in principle, what we mean by positions, times, masses,
and forces, we can proceed to discuss the cornerstone of our subject — Newton’s three
laws of motion.

4The approach also creates the confusing appearance that Newton’s second law is just a conse-
quence of the definition of force. This is not really true: Whatever definition we choose for force,
a large part of the second law is experimental. One advantage of defining forces with spring bal-
ances is that it separates out the definition of force from the experimental basis of the second law.
Of course, all commonly accepted definitions give the same final result for the value of any given
force.
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1.4 Newton’s First and Second Laws; Inertial Frames

In this chapter, I am going to discuss Newton’s laws as they apply to a point mass. A
point mass, or particle, is a convenient fiction, an object with mass, but no size,
that can move through space but has no internal degrees of freedom. It can have
“translational” kinetic energy (energy of its motion through space) but no energy of
rotation or of internal vibrations or deformations. Naturally, the laws of motion are
simpler for point particles than for extended bodies, and this is the main reason that we
start with the former. Later on, I shall build up the mechanics of extended bodies from
our mechanics of point particles by considering the extended body as a collection of
many separate particles.

Nevertheless, it is worth recognizing that there are many important problems where
the objects of interest can be realistically approximated as point masses. Atomic and
subatomic particles can often be considered to be point masses, and even macroscopic
objects can frequently be approximated in this way. A stone thrown off the top of a
cliff is, for almost all purposes, a point particle. Even a planet orbiting around the sun
can usually be approximated in the same way. Thus the mechanics of point masses is
more than just the starting point for the mechanics of extended bodies; it is a subject
with wide application itself.

Newton’s first two laws are well known and easily stated:

. . Nawicf‘z s ?zfst Law {ihe Law cf irzezftfa}
v‘}ln ﬁz : ab&em:a i’}f fzzrrc:as a pmmie mw&s With cf;}nstazzt veimz{y v.

and

In this equation F denotes the vector sum of all the forces on the particle and a is the
particle’s acceleration,

dv
a=—=V
dt
_dzr_r

dr?

Here v denotes the particle’s velocity, and I have introduced the convenient notation
of dots to denote differentiation with respectto ¢, asinv=randa=v =F.

13
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Both laws can be stated in various equivalent ways. For instance (the first law): In
the absence of forces, a stationary particle remains stationary and a moving particle
continues to move with unchanging speed in the same direction. This is, of course,
exactly the same as saying that the velocity is always constant. Again, v is constant if
and only if the acceleration a is zero, so an even more compact statement is this: In
the absence of forces a particle has zero acceleration.

The second law can be rephrased in terms of the particle’s momentum, defined as

p =myv. (1.18)

In classical mechanics, we take for granted that the mass m of a particle never changes,
so that

P = mv = ma.

Thus the second law (1.17) can be rephrased to say that

In classical mechanics, the two forms (1.17) and (1.19) of the second law are com-
pletely equivalent.’

Differential Equations

When written in the form m¥ = F, Newton’s second law is a differential equation
for the particle’s position r(¢). That is, it is an equation for the unknown function
r(¢) that involves derivatives of the unknown function. Almost all the laws of physics
are, or can be cast as, differential equations, and a huge proportion of a physicist’s
time is spent solving these equations. In particular, most of the problems in this book
involve differential equations — either Newton’s second law or its counterparts in the
Lagrangian and Hamiltonian forms of mechanics. These vary widely in their difficulty.
Some are so easy to solve that one scarcely notices them. For example, consider
Newton’s second law for a particle confined to move along the x axis and subject
to a constant force F,

)'C'(I)Z—FE.
m

This is a second-order differential equation for x () as a function of ¢. (Second-order
because it involves derivatives of second order, but none of higher order.) To solve it

5In relativity, the two forms are not equivalent, as we’ll see in Chapter 15. Which form is correct
depends on the definitions we use for force, mass, and momentum in relativity. If we adopt the most
popular definitions of these three quantities, then it is the form (1.19) that holds in relativity.
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one has only to integrate it twice. The first integration gives the velocity
x(t) = /x(t) dt = v, + —t
m

where the constant of integration is the particle’s initial velocity, and a second inte-
gration gives the position

x(t) = /J'c(t) dt = x, + vyt + Fop
2m

where the second constant of integration is the particle’s initial position. Solving this
differential equation was so easy that we certainly needed no knowledge of the theory
of differential equations. On the other hand, we shall meet lots of differential equations
that do require knowledge of this theory, and I shall present the necessary theory as
we need it. Obviously, it will be an advantage if you have already studied some of the
theory of differential equations, but you should have no difficulty picking it up as we
go along. Indeed, many of us find that the best way to learn this kind of mathematical
theory is in the context of its physical applications.

Inertial Frames

On the face of it, Newton’s second law includes his first: If there are no forces on an
object, then F = 0 and the second law (1.17) implies that a = 0, which is the first law.
There is, however, an important subtlety, and the first law has an important role to
play. Newton’s laws cannot be true in all conceivable reference frames. To see this,
consider just the first law and imagine a reference frame — we’ll call it § — in which
the first law is true. For example, if the frame § has its origin and axes fixed relative to
the earth’s surface, then, to an excellent approximation, the first law (the law of inertia)
holds with respect to the frame S: A frictionless puck placed on a smooth horizontal
surface is subject to zero force and, in accordance with the first law, it moves with
constant velocity. Because the law of inertia holds, we call § an inertial frame. If we
consider a second frame 8’ which is moving relative to § with constant velocity and is
not rotating, then the same puck will also be observed to move with constant velocity
relative to 8’. That is, the frame 8’ is also inertial.

If, however, we consider a third frame 8” that is accelerating relative to 8, then, as
viewed from 8”, the puck will be seen to be accelerating (in the opposite direction).
Relative to the accelerating frame 8” the law of inertia does not hold, and we say
that 8” is noninertial. I should emphasize that there is nothing mysterious about this
result. Indeed it is a matter of experience. The frame 8’ could be a frame attached
to a high-speed train traveling smoothly at constant speed along a straight track, and
the frictionless puck, an ice cube placed on the floor of the train, as in Figure 1.4. As
seen from the train (frame §8’), the ice cube is at rest and remains at rest, in accord
with the first law. As seen from the ground (frame §), the ice cube is moving with the
same velocity as the train and continues to do so, again in obedience to the first law.
But now consider conducting the same experiment on a second train (frame 8") that
is accelerating forward. As this train accelerates forward, the ice cube is left behind,
and, relative to 8", the ice cube accelerates backward, even though subject to no net
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3 v’ = const v" # const

Figure 1.4 The frame § is fixed to the ground, while &' is fixed to a
train traveling at constant velocity v’ relative to S. An ice cube placed
on the floor of the train obeys Newton’s first law as seen from both &
and §8'. If the train to which 8” is attached is accelerating forward, then,
as seen in 8”, an ice cube placed on the floor will accelerate backward,
and the first law does not hold in 8”.

force. Clearly the frame S” is noninertial, and neither of the first two laws can hold in
8”. A similar conclusion would hold if the frame 8” had been attached to a rotating
merry-go-round. A frictionless puck, subject to zero net force, would not move in a
straight line as seen in 8”, and Newton’s laws would not hold.

Evidently Newton’s two laws hold only in the special, inertial (nonaccelerating
and nonrotating) reference frames. Most philosophers of science take the view that
the first law should be used to identify these inertial frames — a reference frame § is
inertial if objects that are clearly subject to no forces are seen to move with constant
velocity relative to $.° Having identified the inertial frames by means of Newton’s
first law, we can then claim as an experimental fact that the second law holds in these
same inertial frames.’

Since the laws of motion hold only in inertial frames, you might imagine that
we would confine our attention exclusively to inertial frames, and, for a while,
we shall do just that. Nevertheless, you should be aware that there are situations
where it is necessary, or at least very convenient, to work in noninertial frames.
The most important example of a noninertial frame is in fact the earth itself. To an
excellent approximation, a reference frame fixed to the earth is inertial — a fortunate
circumstance for students of physics! Nevertheless, the earth rotates on its axis once
a day and circles around the sun once a year, and the sun orbits slowly around the
center of the Milky Way galaxy. For all of these reasons, a reference frame fixed to
the earth is not exactly inertial. Although these effects are very small, there are several
phenomena — the tides and the trajectories of long-range projectiles are examples —

6 There is some danger of going in a circle here: How do we know that the object is subject to
no forces? We’d better not answer, “Because it’s traveling at constant velocity”! Fortunately, we can
argue that it is possible to identify all sources of force, such as people pushing and pulling or nearby
massive bodies exerting gravitational forces. If there are no such things around, we can reasonably
say that the object is free of forces.

7 As I mentioned earlier, the extent to which the second law is an experimental statement depends
on how we choose to define force. If we define force by means of the second law, then to some extent
(though certainly not entirely) the law becomes a matter of definition. If we define forces by means
of spring balances, then the second law is clearly an experimentally testable proposition.
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that are most simply explained by taking into account the noninertial character of a
frame fixed to the earth. In Chapter 9 we shall examine how the laws of motion must
be modified for use in noninertial frames. For the moment, however, we shall confine
our discussion to inertial frames.

Validity of the First Two Laws

Since the advent of relativity and quantum mechanics, we have known that Newton’s
laws are not universally valid. Nevertheless, there is an immense range of phenom-
ena — the phenomena of classical physics — where the first two laws are for all
practical purposes exact. Even as the speeds of interest approach c, the speed of light,
and relativity becomes important, the first law remains exactly true. (In relativity,
just as in classical mechanics, an inertial frame is defined as one where the first law
holds.)® As we shall see in Chapter 15, the two forms of the second law, F = ma and
F = p, are no longer equivalent in relativity, although with F and p suitably defined
the second law in the form F = p is still valid. In any case, the important point is this:
In the classical domain, we can and shall assume that the first two laws (the second
in either form) are universally and precisely valid. You can, if you wish, regard this
assumption as defining a model — the classical model — of the natural world. The
model is logically consistent and is such a good representation of many phenomena
that it is amply worthy of our study.

1.5 The Third Law and Conservation of Momentum

Newton’s first two laws concern the response of a single object to applied forces.
The third law addresses a quite different issue: Every force on an object inevitably
involves a second object — the object that exerts the force. The nail is hit by the
hammer, the cartis pulled by the horse, and so on. While this much is no doubt a matter
of common sense, the third law goes considerably beyond our everyday experience.
Newton realized that if an object 1 exerts a force on another object 2, then object 2
always exerts a force (the “reaction” force) back on object 1. This seems quite natural:
If you push hard against a wall, it is fairly easy to convince yourself that the wall is
exerting a force back on you, without which you would undoubtedly fall over. The
aspect of the third law which certainly goes beyond our normal perceptions is this:
According to the third law, the reaction force of object 2 on object 1 is always equal and
opposite to the original force of 1 on 2. If we introduce the notation F», to denote the
force exerted on object 2 by object 1, Newton’s third law can be stated very compactly:

8However, in relativity the relationship between different inertial frames — the so-called
Lorentz transformation — is different from that of classical mechanics. See Section 15.6.
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Figure 1.5 Newton’s third law asserts that the reaction
force exerted on object 1 by object 2 is equal and opposite
to the force exerted on 2 by 1, that is, Fj, = —F,;.

This statement is illustrated in Figure 1.5, which you could think of as showing the
force of the earth on the moon and the reaction force of the moon on the earth (or a
proton on an electron and the electron on the proton). Notice that this figure actually
goes a little beyond the usual statement (1.20) of the third law: Not only have I shown
the two forces as equal and opposite; I have also shown them acting along the line
joining 1 and 2. Forces with this extra property are called central forces. (They act
along the line of centers.) The third law does not actually require that the forces be
_central, but, as I shall discuss later, most of the forces we encounter (gravity, the
electrostatic force between two charges, etc.) do have this property.

As Newton himself was well aware, the third law is intimately related to the law
of conservation of momentum. Let us focus, at first, on just two objects as shown
in Figure 1.6, whiech might show the earth and the moon or two skaters on the ice.
In addition to the force of each object on the other, there may be “external” forces
exerted by other bodies. The earth and moon both experience forces exerted by the
sun, and both skaters could experience the external force of the wind. I have shown
the net external forces on the two objects as F{*' and F5*'. The total force on object 1
is then

(net forceon 1) = F, = F, + F™
and similarly
(net force on 2) = F, = F,, + F5*.

We can compute the rates of change of the particles’ momenta using Newton’s second
law:

p=F =F, +F" (1.21)
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Figure 1.6 Two objects exert forces on each other and
may also be subject to additional “‘external” forces from
other objects not shown.

and
p,=F,=F, + F‘;’“. ‘ (1.22)
If we now define the total momentum of our two objects as

P=p, +p,
then the rate of change of the total momentum is just
P=p, +p,
To evaluate this, we have only to add Equations (1.21) and (1.22). When we do this,

the two internal forces, F, and F,,, cancel out because of Newton’s third law, and we
are left with

P=F"+F=F", (1.23)

where I have introduced the notation F** to denote the total external force on our
two-particle system. .

The result (1.23) is the first in a series of important results that let us construct a
theory of many-particle systems from the basic laws for a single particle. It asserts
that as far as the total momentum of a system is concerned, the internal forces have
no effect. A special case of this result is that if there are no external forces (F**' = 0)
then P = 0. Thus we have the important result:

If Ft =0, then P = const. (1.24)

In the absence of external forces, the total momentum of our two-particle system is

constant — a result called the principle of conservation of momentum.

Multiparticle Systems

We have proved the conservation of momentum, Equation (1.24), for a system of two
particles. The extension of the result to any number of particles is straightforward in
principle, but I would like to go through it in detail, because it lets me introduce some
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F ext
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o
Figure 1.7 A five-particle system with particles labelled by o or
B=1,2,---,5. The particle « is subject to four internal forces,

shown by solid arrows and denoted F 4 (the force on o by ). In
addition particle « may be subject to a net external force, shown
by the dashed arrow and denoted F.

important notation and will give you some practice using the summation notation. Let
us consider then a system of N particles. I shall label the typical particle with a Greek
index « or B, either of which can take any of the values 1,2, ---, N. The mass of
particle « is m,, and its momentum is p,,. The force on particle « is quite complicated:
Each of the other (N — 1) particles can exert a force which I shall call F 4, the force
on a by B, as illustrated in Figure 1.7. In addition there may be a net external force
on particle «, which I shall call FZ’“. Thus the net force on particle « is

(net force on particle «) = F, = Z Fop + Fz’“. (1.25)
B#a

Here the sum runs over all values of B not equal to . (Remember there is no force
F,, because particle o cannot exert a force on itself.) According to Newton’s second
law, this is the same as the rate of change of p,:

Pe=) Fos+F™ (1.26)
pra

This result holds foreacha =1, ---, N.
Let us now consider the total momentum of our N-particle system,

P=) p,

where, of course, this sum runs over all N particles, @ = 1,2, ---, N. If we differen-
tiate this equation with respect to time, we find

P = Z pa
or, substituting for p,, from (1.26),

P=> "> "F,+) F* (1.27)

o« pra @
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The double sum here contains N(N — 1) terms in all. Each term F 4 in this sum can
be paired with a second term Fy,, (that is, Fy, paired with F;, and so on), so that

Z Z Fop = Z Z(Faﬂ + Fgo). (1.28)

o BF#a o B>a

The double sum on the right includes only values of & and B with ¢ < 8 and has half
as many terms as that on the left. But each term is the sum of two forces, (Fog + Fg, ),
and, by the third law, each such sum is zero. Therefore the whole double sum in (1.28)
is zero, and returning to (1.27) we conclude that

P=> F*=F" (1.29)

The result (1.29) corresponds exactly to the two-particle result (1.23). Like the
latter, it says that the internal forces have no effect on the evolution of the total
momentum P — the rate of change of P is determined by the net external force on the
system. In particular, if the net external force is zero, we have the

mommmmt?? is a{}ﬁgﬁaﬁtﬁ. -

As you are certainly aware, this is one of the most important results in classical
physics and is, in fact, also true in relativity and quantum mechanics. If you are not
very familiar with the sorts of manipulations of sums that we used, it would be a good
idea to go over the argument leading from (1.25) to (1.29) for the case of three or four
particles, writing out all the sums explicitly (Problems 1.28 or 1.29). You should also
convince yourself that, conversely, if the principle of conservation of momentum is
true for all multiparticle systems, then Newton’s third law must be true (Problem 1.31).
In other words, conservation of momentum and Newton’s third law are equivalent to
one another.

Validity of Newton’s Third Law

Within the domain of classical physics, the third law, like the second, is valid with
such accuracy that it can be taken to be exact. As speeds approach the speed of light,
it is easy to see that the third law cannot hold: The point is that the law asserts that
the action and reaction forces, F,,(¢) and F,(¢), measured at the same time t, are
equal and opposite. As you certainly know, once relativity becomes important the
concept of a single universal time has to be abandoned — two events that are seen as
simultaneous by one observer are, in general, not simultaneous as seen by a second
observer. Thus, even if the equality F;,(¢) = —F,;(¢) (with both times the same) were
true for one observer, it would generally be false for another. Therefore, the third law
cannot be valid once relativity becomes important.
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e
x B (of q,)

Figure 1.8 Each of the positive charges g; and g, produces
a magnetic field that exerts a force on the other charge. The
resulting magnetic forces F, and F,; do not obey Newton’s
third law.

Rather surprisingly, there is a simple example of a well-known force — the mag-
netic force between two moving charges — for which the third law is not exactly true,
even at slow speeds. To see this, consider the two positive charges of Figure 1.8, with
g, moving in the x direction and g, moving in the y direction, as shown. The exact
calculation of the magnetic field produced by each charge is complicated, but a simple
argument gives the correct directions of the two fields, and this is all we need. The
moving charge ¢, is equivalent to a current in the x direction. By the right-hand rule
for fields, this produces a magnetic field which points in the z direction in the vicinity
of q,. By the right-hand rule for forces, this field produces a force F,; on g, that is
in the x direction. An exactly analogous argument (check it yourself) shows that the
force Fy, on g, is in the y direction, as shown. Clearly these two forces do not obey
Newton’s third law!

This conclusion is especially startling since we have just seen that Newton’s third
law is equivalent to the conservation of momentum. Apparently the total momentum
m v, + m,Vv, of the two charges in Figure 1.8 is not conserved. This conclusion, which
is correct, serves to remind us that the “mechanical” momentum mv of particles is not
the only kind of momentum. Electromagnetic fields can also carry momentum, and in
the situation of Figure 1.8 the mechanical momentum being lost by the two particles
is going to the electromagnetic momentum of the fields.

Fortunately, if both speeds in Figure 1.8 are much less than the speed of light
(v K ¢), the loss of mechanical momentum and the concomitant failure of the third
law are completely negligible. To see this, note that in addition to the magnetic force
between g, and g, there is the electrostatic Coulomb force® kq,g,/r?, which does obey
Newton’s third law. It is a straightforward exercise (Problem 1.32) to show that the
magnetic force is of order v?/c? times the Coulomb force. Thus only as v approaches
¢ — and classical mechanics must give way to relativity anyway — is the violation of

9Here k is the Coulomb force constant, often written as k = 1/ (4me,).
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the third law by the magnetic force important.'? We see that the unexpected situation of
Figure 1.8 does not contradict our claim that in the classical domain Newton’s third
law is valid, and this is what we shall assume in our discussions of nonrelativistic
mechanics.

1.6 Newton’s Second Law in Cartesian Coordinates

Of Newton’s three laws, the one that we actually use the most is the second, which is
often described as the equation of motion. As we have seen, the first is theoretically
important to define what we mean by inertial frames but is usually of no practical
use beyond this. The third law is crucially important in sorting out the internal forces
in a multiparticle system, but, once we know the forces involved, the second law is
what we actually use to calculate the motion of the object or objects of interest. In
particular, in many simple problems the forces are known or easily found, and, in this
case, the second law is all we need for solving the problem.
As we have already noted, the second law,

F = mf¥, (1.30)

is a second-order, differential equation!! for the position vector r as a function of the
time ¢. In the prototypical problem, the forces that comprise F are given, and our job
is to solve the differential equation (1.30) for r(¢). Sometimes we are told about r(z),
and we have to use (1.30) to find some of the forces. In any case, the equation (1.30) is
a vector differential equation. And the simplest way to solve such equations is almost
always to resolve the vectors into their components relative to a chosen coordinate
system.

Conceptually the simplest coordinate system is the Cartesian (or rectangular), with
unit vectors X, ¥, and Z, in terms of which the net force F can then be written as

F=Fx+Fy+F,1 (1.31)
and the position vector r as
r=xX+yy-+zi (1.32)

As we noted in Section 1.2, this expansion of r in terms of its Cartesian components
is especially easy to differentiate because the unit vectors X, y, Z are constant. Thus
we can differentiate (1.32) twice to get the simple result

F=Xx+3yy+7Zzz. (1.33)

10 The magnetic force between two steady currents is not necessarily small, even in the classical
domain, but it can be shown that this force does obey the third law. See Problem 1.33.

"'The force F can sometimes involve derivatives of r. (For instance the magnetic force on a
moving charge involves the velocity v = r.) Very occasionally the force F involves a higher derivative
of r, of order n > 2, in which case the second law is an nth-order differential equation.
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That is, the three Cartesian components of  are just the appropriate derivatives of the
three coordinates x, y, z of r, and the second law (1.30) becomes

F X+ F,§+ F,i=mi% +my§ +m:2. (1.34)

Resolving this equation into its three separate components, we see that F, has to equal
mXx and similarly for the y and z components. That is, in Cartesian coordinates, the
single vector equation (1.30) is equivalent to the three separate equations:

F, =mx
F = mr = F,=mj (1.35)
F,=mz.

This beautiful result, that, in Cartesian coordinates, Newton’s second law in three
dimensions is equivalent to three one-dimensional versions of the same law, is the
basis of the solution of almost all simple mechanics problems in Cartesian coordinates.
Here is an example to remind you of how such problems go.

s e e

O e A

EXAMPLE 1.1 A Block Sliding down an Incline

A block of mass m is observed accelerating from rest down an incline that has
coefficient of friction u and is at angle 6 from the horizontal. How far will it
travel in time ¢?

Our first task is to choose our frame of reference. Naturally, we choose our
spatial origin at the block’s starting position and the origin of time (# = 0) at the
moment of release. As you no doubt remember from your introductory physics
course, the best choice of axes is to have one axis (x say) point down the slope,
one (y) normal to the slope, and the third (z) across it, as shown in Figure 1.9.
This choice has two advantages: First, because the block slides straight down
the slope, the motion is entirely in the x direction, and only x varies. (If we had
chosen the x axis horizontal and the y axis vertical, then both x and y would
vary.) Second, two of the three forces on the block are unknown (the normal
force N and friction f; the weight, w = mg, we treat as known), and with our
choice of axes, each of the unknowns has only one nonzero component, since
N is in the y direction and f is in the (negative) x direction.

We are now ready to apply Newton’s second law. The result (1.35) means
that we can analyse the three components separately, as follows:

There are no forces in the z direction, so F, = 0. Since F, = mz, it follows
that z = 0, which iinplies that z (or v,) is constant. Since the block starts from
rest, this means that z is actually zero for all . With z = 0, it follows that z is
constant, and, since it too starts from zero, we conclude that z = O for all z. As
we would certainly have guessed, the motion remains in the xy plane.

Since the block does not jump off the incline, we know that there is no motion
in the y direction. In particular, = 0. Therefore, Newton’s second law implies
that the y component of the net force is zero; that is, F), = 0. From Figure 1.9
we see that this implies that

F,=N —mgcost =0.
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Figure 1.9 A block slides down a slope of incline 6. The three
forces on the block are its weight, w = mg, the normal force
of the incline, N, and the frictional force f, whose magnitude is
f = uN. The z axis is not shown but points out of the page, that
is, across the slope.

Thus the y component of the second law has told us that the unknown
normal force is N = mg cos 6. Since f = uN, this tells us the frictional force,
f = umgcosf, and all the forces are now known. All that remains is to use
the remaining component (the x component) of the second law to solve for the
actual motion.

The x component of the second law, F, = mx, implies (see Figure 1.9) that

w, — f =mi
or
mgsinf — umgcosd = mx.
The m’s cancel, and we find for the acceleration down the slope
X = g(sinf — pcosh). (1.36)

Having found X, and found it to be constant, we have only to integrate it twice
to find x as a function of ¢. First

X = g(sinf@ — pcosH)t.
(Remember that x = 0 initially, so the constant of integration is zero.) Finally,

x(t) = %g(sin@ — 1 cos0)e?

(again the constant of

integration is zero) and our solution is co

SR

mplete.
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r=|r|

e—w

0 ¢

X

Figure 1.10  The definition of the polar coordinates » and ¢.

1.7 Two-Dimensional Polar Coordinates

While Cartesian coordinates have the merit of simplicity, we are going to find that it is
almost impossible to solve certain problems without the use of various non-Cartesian
coordinate systems. To illustrate the complexities of non-Cartesian coordinates, let us
consider the form of Newton’s second law in a two-dimensional problem using polar
coordinates. These coordinates are defined in Figure 1.10. Instead of using the two
rectangular coordinates x, y, we label the position of a particle with its distance » from
O and the angle ¢ measured up from the x axis. Given the rectangular coordinates
x and y, you can calculate the polar coordinates » and ¢, or vice versa, using the
following relations. (Make sure you understand all four equations.'?)

x:’°05¢}<_>{r:\/m (137)

y=rsing ¢ = arctan(y/x)

Just as with rectangular coordinates, it is convenient to introduce two unit vectors,
which I shall denote by f and <2> To understand their definitions, notice that we can
define the unit vector X as the unit vector that points in the direction of increasing x
when y is fixed, as shown in Figure 1.11(a). In the same way we shall define T as
the unit vector that points in the direction we move when r increases with ¢ fixed;
likewise, (i is the unit vector that points in the direction we move when ¢ increases
with r fixed. Figure 1.11 makes clear a most important difference between the unit
vectors X and y of rectangular coordinates and our new unit vectors T and @ The
vectors X and § are the same at all points in the plane, whereas the new vectors r and
¢A) change their directions as the position vector r moves around. We shall see that this
complicates the use of Newton’s second law in polar coordinates.

Figure 1.11 suggests another way to write the unit vector r. Since I is in the same
direction as r, but has magnitude 1, you can see that

r

r=—. (1.38)
Ir|

This result suggests a second role for the “hat” notation. For any vector a, we can
define a as the unit vector in the direction of a, namely 4 = a/|a].

12 There is a small subtlety concerning the equation for ¢: You need to make sure ¢ lands in the
proper quadrant, since the first and third quadrants give the same values for y/x (and likewise the
second and fourth). See Problem 1.42.
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Figure 1.11  (a) The unit vector X points in the direction of increas-
ing x with y fixed. (b) The unit vector ¥ points in the direction of
increasing r with ¢ fixed; (2) points in the direction of increasing ¢
with r fixed. Unlike %, the vectors £ and ¢ change as the position
vector r moves.

Since the two unit vectors f and ¢ are perpendicular vectors in our two-dimensional
space, any vector can be expanded in terms of them. For instance, the net force F on
an object can be written

F=F,f+ F,f. (1.39)

If, for example, the object in question is a stone that I am twirling in a circle on the
end of a string (with my hand at the origin), then F, would be the tension in the string
and F the force of air resistance retarding the stone in the tangential direction. The
expansion of the position vector itself is especially simple in polar coordinates. From
Figure 1.11(b) it is clear that

r=rf. (1.40)

We are now ready to ask about the form of Newton’s second law, F = m¥, in polar
coordinates. In rectangular coordinates, we saw that the x component of I is just X, and
this is what led to the very simple result (1.35). We must now find the components of
I in polar coordinates; that is, we must differentiate (1.40) with respect to . Although
(1.40) is very simple, the vector r changes as r moves. Thus when we differentiate
(1.40), we shall pick up a term involving the derivative of ¥. Our first task is to find
this derivative of F.

Figure 1.12(a) shows the position of the particle of interest at two successive times,
t;and 1, = t; + At. If the corresponding angles ¢ (¢;) and ¢ (¢,) are different, then the
two unit vectors F(¢,) and £(¢,) point in different directions. The change in I is shown
in Figure 1.12(b), and (provided At is small) is approximately

AR~ Ad
~ ¢ At . (1.41)
(Notice that the direction of At is perpendicular to £, namely the direction of (Ab.) If

we divide both sides by At and take the limit as At — 0, then A¥/At — dt/dt and
we find that
dr

=9, (1.42)

27



28

Chapter 1 Newton’s Laws of Motion

Y i(z,)

£())

Figure 1.12 (a) The positions of a particle at two successive
times, #; and £,. Unless the particle is moving exactly radially,
the corresponding unit vectors £(¢;) and ¥(¢,) point in different
directions. (b) The change AF in r is given by the triangle
shown.

(For an alternative proof of this important result, see Problem 1.43.) Notice that dt/dt
is in the direction of ¢ and is proportional to the rate of change of the angle ¢ — both
of which properties we would expect based on Figure 1.12.

Now that we know the derivative of ¥, we are ready to differentiate Equation (1.40).
Using the product rule, we get two terms:

A r
r=rr+r—,
dt

and, substituting (1.42), we find for the velocity r, or v,
=t =7/f+rdo. (1.43)
From this we can read off the polar components of the velocity:
v,=F and vy=ré=row (1.44)

where in the second equation I have introduced the traditional notation w for the an-
gular velocity ¢. While the results in (1.44) should be familiar from your introductory
physics course, they are undeniably more complicated than the corresponding results
in Cartesian coordinates (v, = x and v, = y).

Before we can write down Newton’s second law, we have to differentiate a second
time to find the acceleration:

d d S
F=—r=—(r 1.45
Tat T @ (T+7r99). (145

a

where the final expression comes from substituting (1.43) for r. To complete the
differentiation in (1.45), we must calculate the derivative of <;5 This calculation is
completely analogous to the argument leading to (1.42) and is illustrated in Figure
1.13. By inspecting this figure, you should be able to convince yourself that

d$ _

I = —¢r. (1.46)
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Figure 1.13  (a) The unit vector &S at two successive times
t; and #,. (b) The change A¢.

Returning to Equation (1.45), we can now carry out the differentiation to give the
following five terms:

wn . .dF . A .dé
a=<rr+r———)+ (r¢+r¢)¢+r¢—¢
dt dt
or, if we use (1.42) and (1.46) to replace the derivatives of the two unit vectors,

a= ('r' _ rq’s2) £+ (rd +279) . (1.47)

This horrible result is a little easier to understand if we consider the special case
that r is constant, as is the case for a stone that I twirl on the end of a string of fixed
length. With r constant, both derivatives of r are zero, and (1.47) has just two terms:

a=—r¢’t +ro¢
or
_ 24 1
a=-—rorT+rag,

where = ¢ denotes the angular velocity and o« =  is the angular acceleration. This
is the familiar result from elementary physics that when a particle moves around a
fixed circle, it has an inward “centripetal” acceleration ra? (or 2 /r) and a tangential
acceleration, r«. Nevertheless, when r is not constant, the acceleration includes all
four of the terms in (1.47). The first term, 7 in the radial direction is what you would
probably expect when r varies, but the final term, 27¢ in the ¢ direction, is harder
to understand. It is called the Coriolis acceleration, and I shall discuss it in detail in
Chapter 9.

Having calculated the acceleration as in (1.47), we can finally write down Newton’s
second law in terms of polar coordinates:

F =ma R

{ F.=m@ — r¢? (1.48)

Fy= m(r + 2r¢).

These equations in polar coordinates are a far cry from the beautifully simple equa-
tions (1.35) for rectangular coordinates. In fact, one of the main reasons for taking the
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trouble to recast Newtonian mechanics in the Lagrangian formulation (Chapter 7) is
that the latter is able to handle nonrectangular coordinates just as easily as rectangular.

You may justifiably be feeling that the second law in polar coordinates is so
complicated that there could be no occasion to use it. In fact, however, there are many
problems which are most easily solved using polar coordinates, and I conclude this
section with an elementary example.

R R e R e S

EXAMPLE 1.2 An Oscillating Skateboard

S

A “half-pipe” at a skateboard park consists of a concrete trough with a semicircu-
lar cross section of radius R = 5 m, as shown in Figure 1.14. [ hold a frictionless
skateboard on the side of the trough pointing down toward the bottom and release
it. Discuss the subsequent motion using Newton’s second law. In particular, if
I release the board just a short way from the bottom, how long will it take to
come back to the point of release? '

Because the skateboard is constrained to move on a circular path, this prob-
lem is most easily solved using polar coordinates with origin O at the center of
the pipe as shown. (At some point in the following calculation, try writing the
second law in rectangular coordinates and observe what a tangle you get.) With
this choice of polar coordinates, the coordinate r of the skateboard is constant,
r = R, and the position of the skateboard is completely specified by the angle
¢. With r constant, the second law (1.48) takes the relatively simple form

F. = —mR¢* (1.49)
and
Fy=mRé. (1.50)

The two forces on the skateboard are its weight w = mg and the normal force N
of the wall, as shown in Figure 1.14. The components of the net force F = w + N
are easily seen to be

F,=mgcos¢ — N and Fy=—mgsing.

Figure 1.14 A skateboard in a semicircular trough
of radius R. The board’s position is specified by
the anglé ¢ measured up from the bottom. The two
forces on the skateboard are its weight w = mg and
the normal force N.
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Substituting for F, into (1.49) we get an equation involving N, ¢, and .
Fortunately, we are not really interested in N, and — even more fortunately —
when we substitute for F, into (1.50), we get an equation that does not involve
N at all:

—mgsing = mR¢

or, canceling the m’s and rearranging,
$=—Ssing. (1.51)
R

Equation (1.51) is the differential equation for ¢ (¢) that determines the
motion of the skateboard. Qualitatively, we can easily see the kind of motion
that it implies. First, if ¢ = 0, (1.51) says that é = 0. Therefore, if we place
the board at rest (¢ = 0) at the point ¢ = 0, the board will never move (unless
someone pushes it); that is, ¢ = 0 is an equilibrium position, as you would
certainly have guessed. Next, suppose that at some time, ¢ is not zero and, to
be definite, suppose that ¢ > 0; that is, the skateboard is on the right-hand side
of the half-pipe. In this case, (1.51) implies that é < 0, so the acceleration is
directed to the left. If the board is moving to the right it must slow down and
eventually start moving to the left.!> Once it is moving toward the left, it speeds
up and returns to the bottom, where it moves over to the left. As soon as the
board is on the left, the argument reverses (¢ < 0, so ¢ > 0) and the board must
eventually return to the bottom and move over to the right again. In other words,
the differential equation (1.51) implies that the skateboard oscillates back and
forth, from right to left and back to the right.

The equation of motion (1.51) cannot be solved in terms of elementary func-
tions, such as polynomials, trigonometric functions, or logs and exponentials.'*
Thus, if we want more quantitative information about the motion, the simplest
course is to use a computer to solve it numerically (see Problem 1.50). However,
if the initial angle ¢, is small, we can use the small angle approximation

sing ~ ¢ (1.52)

and, within this approximation, (1.51) becomes
.o g
=2 1.53
¢ R ¢ (1.53)

which can be solved using elementary functions. [By this stage, you have al-
most certainly recognized that our discussion of the skateboard problem closely
parallels the analysis of the simple pendulum. In particular, the small-angle

131 am taking for granted that it doesn’t reach the top and jump out of the trough. Since it was
released from rest inside the trough, this is correct. Much the easiest way to prove this claim is to
invoke conservation of energy, which we shan’t be discussing for a while. Perhaps, for now, you
could agree to accept it as a matter of common sense.

14 Actually the solution of (1.51) is a Jacobi elliptic function. However, I shall take the point of
view that for most of us the Jacobi function is not “elementary.”
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approximation (1.52) is what let you solve the simple pendulum in your intro-
ductory physics course. This parallel is, of course, no accident. Mathematically
the two problems are exactly equivalent.] If we define the parameter

w =

8
=, 1.54
R (1.54)

then (1.53) becomes

¢ = —w¢. (1.55)

This is the equation of motion for our skateboard in the small-angle approxima-
tion. I would like to discuss its solution in some detail to introduce several ideas
that we’ll be using again and again in what follows. (If you’ve studied differential
equations before, just see the next three paragraphs as a quick review.)

We first observe that it is easy to find two solutions of the equation (1.55)
by inspection (that is, by inspired guessing). The function ¢ (¢) = A sin(wt) is
clearly a solution for any value of the constant A. [Differentiating sin(w?) brings
out a factor of w and changes the sin to a cos; differentiating it again brings
out another @ and changes the cos back to —sin. Thus the proposed solution
does satisfy b= —w¢.] Similarly, the function ¢ (¢) = B cos(wt) is another
solution for any constant B. Furthermore, as you can easily check, the sum of
these two solutions is itself a solution. Thus we have now found a whole family
of solutions:

¢(t) = Asin(wt) + B cos(wt) (1.56)

is a solution for any values of the two constants A and B.

I now want to argue that every solution of the equation of motion (1.55)
has the form (1.56). In other words, (1.56) is the general solution — we have
found all solutions, and we need seek no further. To get some idea of why
this is, note that the differential equation (1.55) is a statement about the second
derivative ¢ of the unknown ¢. Now, if we had actually been told what é is, then
we know from elementary calculus that we could find ¢ by two integrations,
and the result would contain two unknown constants — the two constants of
integration — that would have to be determined by looking (for example) at the
initial values of ¢ and é. In other words, knowledge of ¢ would tell us that
¢ itself is one of a family of functions containing precisely two undetermined
constants. Of course, the differential equation (1.55) does not actually tell us
¢ —itis an equation for é in terms of ¢. Nevetheless, it is plausible that such
an equation would imply that ¢ is one of a family of functions that contain
precisely two undetermined constants. If you have studied differential equations,
you know that this is the case; if you have not, then I must ask you to accept it
as a plausible fact: For any given second-order differential equation [in a large
class of “reasonable” equations, including (1.55) and all of the equations we
shall encounter in this book], the solutions all belong to a family of functions
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containing precisely two independent constants — like the constants A and B in
(1.56). (More generally, the solutions of an nth-order equation contain precisely
n independent constants.)

This theorem sheds a new light on our solution (1.56). We already knew that
any function of the form (1.56) is a solution of the equation of motion. Our
theorem now guarantees that every solution of the equation of motion is of this
form. This same argument applies to all the second-order differential equations
we shall encounter. If, by hook or by crook, we can find a solution like (1.56)
involving two arbitrary constants, then we are guaranteed that we have found
the general solution of our equation.

All that remains is to pin down the two constants A and B for our skateboard.
To do so, we must look at the initial conditions. At ¢ = 0, Equation (1.56) implies
that ¢ = B. Therefore B is just the initial value of ¢, which we are calling ¢,
so B = ¢,. Att = 0, Equation (1.56) implies that é = wA. Since I released the
board from rest, this means that A = 0, and our solution is

¢ (t) = ¢, cos(wt). (1.57)

The first thing to note about this solution is that, as we anticipated on general
grounds, ¢ (¢) oscillates, moving from positive to negative and back to positive
periodically and indefinitely. In particular, the board first returns to its initial
position ¢, when wt = 27. The time that this takes is called the period of
the motion and is denoted t. Thus our conclusion is that the period of the
skateboard’s oscillations is

(1.58)

We were given that R = 5m, and g = 9.8m/s?. Substituting these numbers,
we conclude that the skateboard returns to its starting point in a time t = 4.5
seconds.

Principal Definitions and Equations of Chapter 1

Dot and Cross Products

r-s=rscosf =r.s, + rySy + 1,5, [Egs. (1.6) & (1.7)]

X y z
r X S=(r,s, —7r,S, 1S, — 1., r.;s,—rs)=det|r. r, r,| [Eq.(1.9)]
S, S, S,

y
y
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Inertial Frames

An inertial frame is any reference frame in which Newton’s first law holds, that is, a
nonaccelerating, nonrotating frame.

Unit Vectors of a Coordinate System

If (¢, 7, ¢) are an orthogonal system of coordinates, then
?g' = unit vector in direction of increasing & with n and ¢ fixed

and so on, and any vector s can be expanded as s = sfé + 5,0 + sgf.

Newton’s Second Law in Various Coordinate Systems

Vector Form  Cartesian 2D Polar Cylindrical Polar
(x,y,2) (r, 9) (0, &, 2)
Fx:mx F=m(r——r¢2) Frzm(p_p¢2)
F = mr F,=my { ! - . Fy,=m(pg + 269)
y — ¢
F,=mz Fo=m(ro +2r¢) F,=mz
Eq. (1.35) Eq. (1.48) Problem 1.47 or 1.48

Problems for Chapter 1

The problems for each chapter are arranged according to section number. A problem listed for a given
section requires an understanding of that section and earlier sections, but not of later sections. Within each
section problems are listed in approximate order of difficulty. A single star () indicates straightforward
problems involving just one main concept. Two stars (xx) identify problems that are slightly more challenging
and usually involve more than one concept. Three stars (xx%) indicate problems that are distinctly more
challenging, either because they are intrinsically difficult or involve lengthy calculations. Needless to say,
these distinctions are hard to draw and are only approximate.

Problems that need the use of a computer are flagged thus: [Computer]. These are mostly classified as
**xx on the grounds that it usually takes a long time to set up the necessary code — especially if you're just
learning the language.

SECTION 1.2 Space and Time
1.1 Given the two vectorsb=%X+yande=X+zfindb+ ¢,5b + 2¢c,b-c,and b x c.

1.2 x Two vectors are given as b = (1, 2, 3) and ¢ = (3, 2, 1). (Remember that these statements are just
a compact way of giving you the components of the vectors.) Find b + ¢,5b — 2¢,b-¢c,and b x c.

1.3 * By applying Pythagoras’s theorem (the usual two-dimensional version) twice over, prove that
the length r of a three-dimensional vector r = (x, y, z) satisfies r2=x2+ y2 + Z2.
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1.4 * One of the many uses of the scalar product is to find the angle between two given vectors. Find
the angle between the vectors b = (1, 2, 4) and ¢ = (4, 2, 1) by evaluating their scalar product.

1.5 » Find the angle between a body diagonal of a cube and any one of its face diagonals. [Hint: Choose
a cube with side 1 and with one corner at O and the opposite corner at the point (1, 1, 1). Write down
the vector that represents a body diagonal and another that represents a face diagonal, and then find the
angle between them as in Problem 1.4.]

1.6 * By evaluating their dot product, find the values of the scalar s for which the two vectors
b =X + sy and ¢ = X — s¥ are orthogonal. (Remember that two vectors are orthogonal if and only
if their dot product is zero.) Explain your answers with a sketch.

1.7 x Prove that the two definitions of the scalar productr -sas rs cos 0 (1.6) and > _ r;s; (1.7) are equal.
One way to do this is to choose your x axis along the direction of r. [Strictly speaking you should first
make sure that the definition (1.7) is independent of the choice of axes. If you like to worry about such
niceties, see Problem 1.16.]

1.8 x (a) Use the definition (1.7) to prove that the scalar product is distributive, thatis, r - (u 4 v) =
r-u+ r-v.(b) If r and s are vectors that depend on time, prove that the product rule for differentiating
products applies to r - s, that is, that

1.9 In elementary trigonometry, you probably learned the law of cosines for a triangle of sides a, b,
and ¢, that ¢* = a® + b? — 2ab cos 8, where 9 is the angle between the sides a and b. Show that the
law of cosines is an immediate consequence of the identity (a + b)? = a®> + b + 2a-b.

1.10 x A particle moves in a circle (center O and radius R) with constant angular velocity w counter-
clockwise. The circle lies in the xy plane and the particle is on the x axis at time ¢t = 0. Show that the
particle’s position is given by

r(t) = XR cos(wt) + ¥R sin(wt).

Find the particle’s velocity and acceleration. What are the magnitude and direction of the acceleration?
Relate your results to well-known properties of uniform circular motion.

1.11 * The position of a moving particle is given as a function of time ¢ to be
r(t) = xb cos(wt) + yc sin(wt),

where b, ¢, and w are constants. Describe the particle’s orbit.

1.12 » The position of a moving particle is given as a function of time ¢ to be
r(t) = Xb cos(wt) + e sin(wt) + Zvt

where b, ¢, v, and w are constants. Describe the particle’s orbit.

1.13 * Let u be an arbitrary fixed unit vector and show that any vector b satisfies
b* = (u-b)> + (u x b)%.

Explain this result in words, with the help of a picture.
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1.14 * Prove that for any two vectors a and b,
la+b| < (a+b).

[Hint: Work out |a + b|? and compare it with (a + b)2] Explain why this is called the triangle
inequality.

1.15 * Show that the definition (1.9) of the cross product is equivalent to the elementary definition that
r x s is perpendicular to both r and s, with magnitude rs sin# and direction given by the right-hand
rule. [Hint: It is a fact (though quite hard to prove) that the definition (1.9) is independent of your choice
of axes. Therefore you can choose axes so that r points along the x axis and s lies in the xy plane.]

1.16 »* (a) Defining the scalar product r - s by Equation (1.7), r -s = ) _ r;s; , show that Pythagoras’s
theorem implies that the magnitude of any vector r is 7 = /T - r. (b) It is clear that the length of a
vector does not depend on our choice of coordinate axes. Thus the result of part (a) guarantees that the
scalar product r - r, as defined by (1.7), is the same for any choice of orthogonal axes. Use this to prove
that r - s, as defined by (1.7), is the same for any choice of orthogonal axes. [Hint: Consider the length
of the vectorr + s.]

1.17 +x (a) Prove that the vector product r x s as defined by (1.9) is distributive; that is, thatr x (u +
v) = (r x u) 4 (r x v). (b) Prove the product rule

i(rxs)—rxé—kd—txs
dt o Tdr dt T

Be careful with the order of the factors.

1.18 »x The three vectors a, b, ¢ are the three sides of the triangle A BC with angles «, 8,  as shown
in Figure 1.15. (a) Prove that the area of the triangle is given by any one of these three expressions:

1 1 1
area = 5|a x b = 5|b x ¢| = 5|c x a|.

(b) Use the equality of these three expressions to prove the so-called law of sines, that

a b C

sin¢ sinf  siny

Figure 1.15 Triangle for Problem 1.18.
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1.19*x If r, v, a denote the position, velocity, and acceleration of a particle, prove that
d .
—fa-(vxr)]=a-(v xXr).
dt

1.20 »x The three vectors A, B, C point from the origin O to the three corners of a triangle. Use the
result of Problem 1.18 to show that the area of the triangle is given by

(area of triangle) = 7|(B x C) + (C x A) + (A x B)|.

1.21 ** A parallelepiped (a six-faced solid with opposite faces parallel) has one corner at the origin
O and the three edges that emanate from O defined by vectors a, b, ¢. Show that the volume of the
parallelepiped is |a - (b x ¢)].

1.22 »x The two vectors a and b lie in the xy plane and make angles « and § with the x axis. (a) By
evaluating a - b in two ways [namely using (1.6) and (1.7)] prove the well-known trig identity

cos(a — B) = cosa cos B + sina sin S.
(b) By similarly evaluating a x b prove that
sin(¢ — B) = sin cos B — cos« sin B.

1.23 »x The unknown vector v satisfiesb - v= XA and b x v = ¢, where A, b, and c are fixed and known.
Find v in terms of A, b, and c.

SECTION 1.4 Newton’s First and Second Laws; Inertial Frames

1.24 » In case you haven’t studied any differential equations before, I shall be introducing the necessary
ideas as needed. Here is a simple excercise to get you started: Find the general solution of the first-
order equation df/dt = f for an unknown function f(z). [There are several ways to do this. One is
to rewrite the equation as df/f = dt and then integrate both sides.] How many arbitrary constants
does the general solution contain? [Your answer should illustrate the important general theorem that
the solution to any nth-order differential equation (in a very large class of “reasonable” equations)
contains n arbitrary constants.]

1.25 * Answer the same questions as in Problem 1.24, but for the differential equation df/dt = =3 f.

1.26 *x The hallmark of an inertial reference frame is that any object which is subject to zero net force
will travel in a straight line at constant speed. To illustrate this, consider the following: I am standing
on a level floor at the origin of an inertial frame § and kick a frictionless puck due north across the
floor. (a) Write down the x and y coordinates of the puck as functions of time as seen from my inertial
frame. (Use x and y axes pointing east and north respectively.) Now consider two more observers, the
first at rest in a frame 8’ that travels with constant velocity v due east relative to S, the second at rest
in a frame 8” that travels with constant acceleration due east relative to 8. (All three frames coincide
at the moment when I kick the puck, and 8" is at rest relative to S at that same moment.) (b) Find the
coordinates x’, y’ of the puck and describe the puck’s path as seen from §'. (¢) Do the same for 8”.
Which of the frames is inertial?

1.27 »x The hallmark of an inertial reference frame is that any object which is subject to zero net force
will travel in a straight line at constant speed. To illustrate this, consider the following experiment: I am
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standing on the ground (which we shall take to be an inertial frame) beside a perfectly flat horizontal
turntable, rotating with constant angular velocity w. I lean over and shove a frictionless puck so that
it slides across the turntable, straight through the center. The puck is subject to zero net force and, as
seen from my inertial frame, travels in a straight line. Describe the puck’s path as observed by someone
sitting at rest on the turntable. This requires careful thought, but you should be able to get a qualitative
picture. For a quantitative picture, it helps to use polar coordinates; see Problem 1.46.

SECTION 1.5 The Third Law and Conservation of Momentum

1.28 * Go over the steps from Equation (1.25) to (1.29) in the proof of conservation of momentum,
but treat the case that N = 3 and write out all the summations explicitly to be sure you understand the
various manipulations.

1.29 * Do the same tasks as in Problem 1.28 but for the case of four particles (N = 4).

1.30 * Conservation laws, such as conservation of momentum, often give a surprising amount of
information about the possible outcome of an experiment. Here is perhaps the simplest example: Two
objects of masses m; and m, are subject to no external forces. Object 1 is traveling with velocity v
when it collides with the stationary object 2. The two objects stick together and move off with common
velocity v'. Use conservation of momentum to find v’ in terms of v, m, and m,.

1.31 * In Section 1.5 we proved that Newton’s third law implies the conservation of momentum.
Prove the converse, that if the law of conservation of momentum applies to every possible group of
particles, then the interparticle forces must obey the third law. [Hint: However many particles your
system contains, you can focus your attention on just two of them. (Call them 1 and 2.) The law of
conservation of momentum says that if there are no external forces on this pair of particles, then their
total momentum must be constant. Use this to prove that ¥, = —F,,.]

1.32 »x If you have some experience in electromagnetism, you could do the following problem
concerning the curious situation illustrated in Figure 1.8. The electric and magnetic fields at a point r;
due to a charge g, at r, moving with constant velocity v, (with v, < c) are!”

Er)=—— 2§ and Bap=reLy xg
Ame, s? 4 52
where s = r; — r, is the vector pointing from r, to r;. (The first of these you should recognize as
Coulomb’s law.) If F‘I’l?_ and F Ilnzag denote the electric and magnetic forces on a charge g, at r with velocity
vy, show that Flnzlag < (vjvy/c?) Fleé This shows that in the non-relativistic domain it is legitimate to
ignore the magnetic force between two moving charges.

1.33 #*x If you have some experience in electromagnetism and with vector calculus, prove that the
magnetic forces, ¥, and F,;, between two steady current loops obey Newton’s third law. [Hints: Let
the two currents be /; and I, and let typical points on the two loops be r; and r,. If dr; and dr, are
short segments of the loops, then according to the Biot—Savart law, the force on dr; due to dr; is

o iy

e dr; x (dr, x 8)

where s = r| — r,. The force Fy, is found by integrating this around both loops. You will need to use
the “BAC — C AB” rule to simplify the triple product.]

15 See, for example, David J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall, (1999), p. 440.
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1.34 »xx Prove that in the absence of external forces, the total angular momentum (defined as L =
Y, To X Pg) of an N-particle system is conserved. [Hints: You need to mimic the argument from
(1.25) to (1.29). In this case you need more than Newton’s third law: In addition you need to assume
that the interparticle forces are central; that is, F 4 acts along the line joining particles v and S. A full
discussion of angular momentum is given in Chapter 3.]

SECTION 1.6 Newton’s Second Law in Cartesian Coordinates

1.35x A golf ball is hit from ground level with speed v, in a direction that is due east and at an angle
0 above the horizontal. Neglecting air resistance, use Newton’s second law (1.35) to find the position
as a function of time, using coordinates with x measured east, y north, and z vertically up. Find the
time for the golf ball to return to the ground and how far it travels in that time.

1.36 * A plane, which is flying horizontally at a constant speed v, and at a height 4 above the sea,
must drop a bundle of supplies to a castaway on a small raft. (a) Write down Newton’s second law
for the bundle as it falls from the plane, assuming you can neglect air resistance. Solve your equations
to give the bundle’s position in flight as a function of time ¢. (b) How far before the raft (measured
horizontally) must the pilot drop the bundle if it is to hit the raft? What is this distance if v, = 50 m/s,
h = 100 m, and g =~ 10 m/s?? (c¢) Within what interval of time (£ At) must the pilot drop the bundle if
it is to land within 10 m of the raft?

1.37 » A student kicks a frictionless puck with initial speed v,,, so that it slides straight up a plane that
is inclined at an angle § above the horizontal. (a) Write down Newton’s second law for the puck and
solve to give its position as a function of time. (b) How long will the puck take to return to its starting
point?

1.38 * You lay a rectangular board on the horizontal floor and then tilt the board about one edge until
it slopes at angle 0 with the horizontal. Choose your origin at one of the two corners that touch the
floor, the x axis pointing along the bottom edge of the board, the y axis pointing up the slope, and
the z axis normal to the board. You now kick a frictionless puck that is resting at O so that it slides
across the board with initial velocity (v, voy, 0). Write down Newton’s second law using the given
coordinates and then find how long the puck takes to return to the floor level and how far it is from O
when it does so.

1.39 »x A ball is thrown with initial speed v, up an inclined plane. The plane is inclined at an angle
¢ above the horizontal, and the ball’s initial velocity is at an angle 6 above the plane. Choose axes
with x measured up the slope, y normal to the slope, and z across it. Write down Newton’s second law
using these axes and find the ball’s position as a function of time. Show that the ball lands a distance
R =2v 02 sin @ cos(6 + ¢)/(g cos? ¢) from its launch point. Show that for given v, and ¢, the maximum
possible range up the inclined plane is R,,, = vo2 /lg(1 + sin¢)].

1.40 **xx A cannon shoots a ball at an angle 6 above the horizontal ground. (a) Neglecting air resistance,
use Newton’s second law to find the ball’s position as a function of time. (Use axes with x measured
horizontally and y vertically.) (b) Let r(¢) denote the ball’s distance from the cannon. What is the
largest possible value of  if r (¢) is to increase throughout the ball’s flight? [Hint: Using your solution

to part (a) you can write down r2 as x2 + yZ2, and then find the condition that 2 is always increasing.]
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SECTION 1.7 Two-Dimensional Polar Coordinates

1.41 » An astronaut in gravity-free space is twirling a mass m on the end of a string of length R in a
circle, with constant angular velocity w. Write down Newton’s second law (1.48) in polar coordinates
and find the tension in the string.

1.42 * Prove that the transformations from rectangular to polar coordinates and vice versa are given
by the four equations (1.37). Explain why the equation for ¢ is not quite complete and give a complete
version.

1.43 x (a) Prove that the unit vector r of two-dimensional polar coordinates is equal to
r=Xcos¢ + ysing (1.59)

and find a corresponding expression for (2) (b) Assuming that ¢ depends on the time ¢, differentiate your
answers in part (a) to give an alternative proof of the results (1.42) and (1.46) for the time derivatives
f and ¢.

1.44 x Verify by direct substitution that the function ¢ () = A sin(wt) + B cos(wt) of (1.56) is a
solution of the second-order differential equation (1.55), ¢ = —w?¢. (Since this solution involves
two arbitrary constants — the coefficients of the sine and cosine functions — it is in fact the general
solution.)

1.45 *x Prove that if v(¢) is any vector that depends on time (for example the velocity of a moving
particle) but which has constant magnitude, then v(t) is orthogonal to v(¢). Prove the converse that if
v(¢) is orthogonal to v(z), then |v(¢)| is constant. [Hint: Consider the derivative of v2.] This is a very
handy result. It explains why, in two-dimensional polars, dr/dt has to be in the direction of (2) and
vice versa. It also shows that the speed of a charged particle in a magnetic field is constant, since the
acceleration is perpendicular to the velocity.

1.46 »x Consider the experiment of Problem 1.27, in which a frictionless puck is slid straight across
a rotating turntable through the center O. (a) Write down the polar coordinates r, ¢ of the puck as
functions of time, as measured in the inertial frame S of an observer on the ground. (Assume that the
puck was launched along the axis ¢ = 0 at ¢ = 0.) (b) Now write down the polar coordinates r’, ¢’ of
the puck as measured by an observer (frame 8’) at rest on the turntable. (Choose these coordinates so
that ¢ and ¢’ coincide at t = 0.) Describe and sketch the path seen by this second observer. Is the frame
8’ inertial?

1.47 »x Let the position of a point P in three dimensions be given by the vector r = (x, y, z) in
rectangular (or Cartesian) coordinates. The same position can be specified by cylindrical polar
coordinates, p, ¢, z, which are defined as follows: Let P’ denote the projection of P onto the xy
plane; that is, P’ has Cartesian coordinates (x, y, 0). Then p and ¢ are defined as the two-dimensional
polar coordinates of P’ in the xy plane, while z is the third Cartesian coordinate, unchanged. (a) Make
a sketch to illustrate the three cylindrical coordinates. Give expressions for p, ¢, z in terms of the
Cartesian coordinates x, y, z. Explain in words what p is (“p is the distance of P from ””). There
are many variants in notation. For instance, some people use r instead of p. Explain why this use of r is
unfortunate. (b) Describe the three unit vectors p, (2), Z and write the expansion of the position vector r
in terms of these unit vectors. (¢) Differentiate your last answer twice to find the cylindrical components
of the acceleration a = F of the particle. To do this, you will need to know the time derivatives of p
and qAS You could get these from the corresponding two-dimensional results (1.42) and (1.46), or you
could derive them directly as in Problem 1.48.
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1.48 »x Find expressions for the unit vectors p, (}, and z of cylindrical polar coordinates (Problem
1.47) in terms of the Cartesian X, y, Z. Differentiate these expressions with respect to time to find
dp/dt,d¢/dt, and dz/dt.

1.49 »x Imagine two concentric cylinders, centered on the vertical z axis, with radii R + €, where € is
very small. A small frictionless puck of thickness 2¢ is inserted between the two cylinders, so that it
can be considered a point mass that can move freely at a fixed distance from the vertical axis. If we use
cylindrical polar coordinates (o, ¢, z) for its position (Problem 1.47), then p is fixed at p = R, while ¢
and z can vary at will. Write down and solve Newton’s second law for the general motion of the puck,
including the effects of gravity. Describe the puck’s motion.

1.50 »x* [Computer] The differential equation (1.51) for the skateboard of Example 1.2 cannot be
solved in terms of elementary functions, but is easily solved numerically. (a) If you have access to
software, such as Mathematica, Maple, or Matlab, that can solve differential equations numerically,
solve the differential equation for the case that the board is released from ¢, = 20 degrees, using the
values R = S m and g = 9.8 m/s>. Make a plot of ¢ against time for two or three periods. (b) On the
same picture, plot the approximate solution (1.57) with the same ¢, = 20°. Comment on your two
graphs. Note: If you haven’t used the numerical solver before, you will need to learn the necessary
syntax. For example, in Mathematica you will need to learn the syntax for “NDSolve” and how to plot
the solution that it provides. This takes a bit of time, but is something that is very well worth learning.

1.51 »»x [Computer] Repeat all of Problem 1.50 but using the initial value ¢, = 7 /2.






CHAPTER

Projectiles and
Charged Particles

In this chapter, I present two topics: the motion of projectiles subject to the forces of
gravity and air resistance, and the motion of charged particles in uniform magnetic
fields. Both problems lend themselves to solution using Newton’s laws in Cartesian
coordinates, and both allow us to review and introduce some important mathematics.
Above all, both are problems of great practical interest.

2.1 Air Resistance

Most introductory physics courses spend some time studying the motion of projectiles,
but they almost always ignore air resistance. In many problems this is an excellent
approximation; in others, air resistance is obviously important, and we need to know
how to account for it. More generally, whether or not air resistance is significant, we
need some way to estimate how important it really is.

Let us begin by surveying some of the basic properties of the resistive force, or
drag, f of the air, or other medium, through which an object is moving. (I shall
generally speak of “air resistance” since air is the medium through which most
projectiles move, but the same considerations apply to other gases and often to liquids
as well.) The most obvious fact about air resistance, well known to anyone who rides
a bicycle, is that it depends on the speed, v, of the object concerned. In addition, for
many objects, the direction of the force due to motion through the air is opposite to
the velocity v. For certain objects, such as a nonrotating sphere, this is exactly true,
and for many it is a good approximation. You should, however, be aware that there
are situations where it is certainly not true: The force of the air on an airplane wing
has a large sideways component, called the lift, without which no airplanes could fly.
Nevertheless, I shall assume that f and v point in opposite directions; that is, I shall
consider only objects for which the sideways force is zero, or at least small enough
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Chapter 2 Projectiles and Charged Particles

w=mg

Figure 2.1 A projectile is subject to two forces, the force
of gravity, w = mg, and the drag force of air resistance,

f=—f()9.

to be neglected. The situation is illustrated in Figure 2.1 and is summed up in the
equation

f=—f(v)9, 2.1)

where v = v/|v| denotes the unit vector in the direction of v, and f (v) is the magnitude
of f.

The function f(v) that gives the magnitude of the air resistance varies with v in
a complicated way, especially as the object’s speed approaches the speed of sound.
However, at lower speeds it is often a good approximation to write!

f()=bv+ v’ = Jiin + fquad (2.2)
where fi;, and fq,,q stand for the linear and quadratic terms respectively,
fin=bv and fy.q=cv’. (2.3)

The physical origins of these two terms are quite different: The linear term, f};,, arises

from the viscous drag of the medium and is generally proportional to the viscosity of

the medium and the linear size of the projectile (Problem 2.2). The quadratic term,
fquag» arises from the projectile’s having to accelerate the mass of air with which it is

continually colliding; f,,4 is proportional to the density of the medium and the cross-

sectional area of the projectile (Problem 2.4). In particular, for a spherical projectile

(a cannonball, a baseball, or a drop of rain), the coefficients b and ¢ in (2.2) have the

form

b=BD and c¢=yD? (2.4)

where D denotes the diameter of the sphere and the coefficients 8 and y depend
on the nature of the medium. For a spherical projectile in air at STP, they have the
approximate values

B =16 x 107% N-s/m? (2.5)

Mathematically, Equation (2.2) is, in a sense, obvious. Any reasonable function is expected to
have a Taylor series expansion, f =a + bv + cv? + - - -. For low enough v, the first three terms
should give a good approximation, and, since f = 0 when v = 0 the constant term, a, has to be zero.
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and
y = 0.25 N-s*/m*. (2.6)

(For calculation of these two constants, see Problems 2.2 and 2.4.) You need to
remember that these values are valid only for a sphere moving through air at STP.
Nevertheless, they give at least a rough idea of the importance of the drag force even
for nonspherical bodies moving through different gases at any normal temperatures
and pressures.

It often happens that we can neglect one of the terms in (2.2) compared to the other,
and this simplifies the task of solving Newton’s second law. To decide whether this
does happen in a given problem, and which term to neglect, we need to compare the
sizes of the two terms:

fquad . Cv2 . )/D (

= ———= — =
flin bv :3

if we use the values (2.5) and (2.6) for a sphere in air. In a given problem, we have
only to substitute the values of D and v into this equation to find out if one of the
terms can be neglected, as the following example illustrates.

1.6 x 10° m—si) Dv 2.7)

S R R R S e

R S e

EXAMPLE 2.1 A Baseball and Some Drops of Liquid

Assess the relative importance of the linear and quadratic drags on a baseball
of diameter D = 7 c¢m, traveling at a modest v = 5 m/s. Do the same for a drop
of rain (D = 1 mm and v = 0.6 m/s) and for a tiny droplet of oil used in the
Millikan oildrop experiment (D = 1.5 um and v = 5 x 107> m/s).

When we substitute the numbers for the baseball into (2.7) (remembering to
convert the diameter to meters), we get

f quad

lin

~ 600 [baseball]. (2.8)

For this baseball, the linear term is clearly negligible and we need consider only
the quadratic drag. If the ball is traveling faster, the ratio fq,,4/ fiin 1S €ven greater.
At slower speeds the ratio is less dramatic, but even at 1 m/s the ratio is 100. In
fact if v is small enough that the linear term is comparable to the quadratic, both
terms are so small as to be negligible. Thus, for baseballs and similar objects, it
is almost always safe to neglect f;, and take the drag force to be

f = —cv’v. (2.9)

For the raindrop, the numbers give

Jaa | [raindrop]. (2.10)
flin

Thus for this raindrop the two terms are comparable and neither can be ne-

glected — which makes solving for the motion more difficult. If the drop were
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a lot larger or were traveling much faster, then the linear term would be negligi-
ble; and if the drop were much smaller or were traveling much slower, then the
quadratic term would be negligible. But in general, with raindrops and similar
objects, we are going to have to take both f};, and fq,,4 Into account.

For the oildrop in the Millikan experiment the numbers give

Jawaa 107 [Millikan oildrop]. (2.11)

lin

In this case, the quadratic term is totally negligible, and we can take

f = —bvv = —bv, (2.12)

where the second, very compact form follows because, of course, vV = v.

S R R S R DR

The moral of this example is clear: First, there are objects for which the drag force
is dominantly linear, and the quadratic force can be neglected — notably, very small
liquid drops in air, but also slightly larger objects in a very viscous fluid, such as a ball
bearing moving through molasses. On the other hand, for most projectiles, such as golf
balls, cannonballs, and even a human in free fall, the dominant drag force is quadratic,
and we can neglect the linear term. This situation is a little unlucky because the linear
problem is much easier to solve than the quadratic. In the following two sections,
I shall discuss the linear case, precisely because it is the easier one. Nevertheless, it
does have practical applications, and the mathematics used to solve itis widely used in
many fields. In Section 2.4, I shall take up the harder but more usual case of quadratic
drag.

To conclude this introductory section, I should mention the Reynolds number, an
important parameter that features prominently in more advanced treatments of motion
in fluids. As already mentioned, the linear drag f;;,, can be related to the viscosity of the
fluid through which our projectile is moving, and the quadratic term f,,q 18 similarly
related to the inertia (and hence density) of the fluid. Thus one can relate the ratio
Jquad/fiin to the fundamental parameters 7, the viscosity, and o, the density, of the
fluid (see Problem 2.3). The result is that the ratio fq,,q/fiin is Of roughly the same
order of magnitude as the dimensionless number R = Dvp/n, called the Reynolds
number. Thus a compact and general way to summarize the foregoing discussion is
to say that the quadratic drag f,,q is dominant when the Reynolds number R is large,
whereas the linear drag dominates when R is small.

2.2 Linear Air Resistance

Let us consider first a projectile for which the quadratic drag force is negligible, so
that the force of air resistance is given by (2.12). We shall see directly that, because
the drag force is linear in v, the equations of motion are very simple to solve. The two
forces on the projectile are the weight w = mg and the drag force f = —bv, as shown
in Figure 2.2. Thus the second law, mr = F, reads

my¥ = mg — bv. (2.13)
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P

f=-bv

W =mg

Figure 2.2 The two forces on a projectile for which the
force of air resistance is linear in the velocity, f = —bv.

An interesting feature of this form is that, because neither of the forces depends onr,
the equation of motion does not involve r itself (only the first and second derivatives
of r). In fact, we can rewrite r as v, and (2.13) becomes

mv = mg — bv, (2.14)

a first-order differential equation for v. This simplification comes about because the
forces depend only on v and not r. It means we have to solve only a first-order
differential equation for v and then integrate v to find r.

Perhaps the most important simplifying feature of linear drag is that the equation
of motion separates into components especially easily. For instance, with x measured
to the right and y vertically downward, (2.14) resolves into

mo, = —bv, (2.15)
and

mv, = mg — bv,,. (2.16)

That is, we have two separate equations, one for v, and one for v,; the equation for v,
does not involve v, and vice versa. Itis important to recognize that this happened only
because the drag force was linear in v. For instance, if the drag force were quadratic,

f = —cv’V = —cov = —c, v+ vy2 v, (2.17)

then in (2.14) we would have to replace the term —bv with (2.17). In place of the two
equations (2.15) and (2.16), we would have

mv, = —c [v2+ vy2 V,
(2.18)
mv, =mg — c /vxz—l-vyzvy.

Here, each equation involves both of the variables v, and v,. These two coupled
differential equations are much harder to solve than the uncoupled equations of the
linear case.

Because they are uncoupled, we can solve each equation for linear drag separately
and then put the two solutions together. Further, each equation defines a problem that
is interesting in its own right. Equation (2.15) is the equation of motion for an object
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Figure 2.3 A cart moves on a horizontal frictionless track
in a medium that produces a linear drag force.

(a cart with frictionless wheels, for instance) coasting horizontally in a medium that
causes linear drag. Equation (2.16) describes an object (a tiny oil droplet for instance)
that is falling vertically with linear air resistance. I shall solve these two separate
problems in turn.

Horizontal Motion with Linear Drag

Consider an object such as the cart in Figure 2.3 coasting horizontally in a linearly
resistive medium. I shall assume thatatt = O the cartis at x = 0 with velocity v, = v,,.
The only force on the cart is the drag f = —bv, thus the cart inevitably slows down.
The rate of slowing is determined by (2.15), which has the general form

b, = —kv,, (2.19)

where k is my temporary abbreviation for k = b/m. This is a first-order differential
equation for v,, whose general solution must contain exactly one arbitrary constant.
The equation states that the derivative of v, is equal to —k times v, itself, and the only
function with this property is the exponential function

v (t) = Ae ™ (2.20)

which satisfies (2.19) for any value of the constant A (Problems 1.24 and 1.25). Since
this solution contains one arbitrary constant, it is the general solution of our first-
order equation; that is, any solution must have this form. In our case, we know that
v,(0) = v,,, so that A = v,,, and we conclude that

v, (1) = v M =077, (2.21)
where I have introduced the convenient parameter
t=1/k=m/b [for linear drag]. (2.22)

We see that our cart slows down exponentially, as shown in Figure 2.4(a). The
parameter T has the dimensions of time (as you should check), and you can see from
(2.21) that when ¢ = 1, the velocity is 1/e of its initial value; that is, t is the “1/e”
time for the exponentially decreasing velocity. As t — oo, the velocity approaches
Zero.

To find the position as a function of time, we have only to integrate the velocity
(2.21). Integrations of this kind can be done using the definite or indefinite integral.
The definite integral has the advantage that it automatically takes care of the constant
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4 xw_ ____________________

ok

(@) (b)

Figure 2.4 (a) The velocity v, as a function of time, ¢, for a cart
moving horizontally with a linear resistive force. As t — 00, v,
approaches zero exponentially. (b) The position x as a function of
t for the same cart. ASt — 00, X —> Xy, = U, T.

of integration: Since v, = dx/dt,

/ v, (') dt' = x(t) — x(0).
0 A

(Notice that I have named the “dummy” variable of integration ¢’ to avoid confusion
with the upper limit ¢.) Therefore

t
x(t) = x(0) + / ve T dr
0

T
=0+ [—vxore_’ /’]O

=Xoo (1—€7/7). (2.23)

In the second line, I have used our assumption that x = 0 when ¢ = 0. And in the last,
I have introduced the parameter

Xoo = VUyoT, (2.24)

which is the limit of x(¢) as t — oo. We conclude that, as the cart slows down, its
position approaches x,, asymptotically, as shown in Figure 2.4(b).

Vertical Motion with Linear Drag

Let us next consider a projectile that is subject to linear air resistance and is thrown
vertically downward. The two forces on the projectile are gravity and air resistance, as
shown in Figure 2.5. If we measure y vertically down, the only interesting component
of the equation of motion is the y component, which reads

mv, = mg — bv,. (2.25)

With the velocity downward (v, > 0), the retarding force is upward, while the force
of gravity is downward. If v is small, the force of gravity is more important than
the drag force, and the falling object accelerates in its downward motion. This will
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Figure 2.5 The forces on a projectile that is thrown ver-
tically down, subject to linear air resistance.

continue until the drag force balances the weight. The speed at which this balance
occurs is easily found by setting (2.25) equal to zero, to give v, = mg/b or

Uy = Uter

where I have defined the terminal speed

Vi = Tbﬁ [for linear drag]. (2.26)

The terminal speed is the speed at which our projectile will eventually fall, if given
the time to do so. Since it depends on m and b, it is different for different bodies. For
example, if two objects have the same shape and size (b the same for both), the heavier
object (m larger) will have the higher terminal speed, just as you would expect. Since
v 18 inversely proportional to the coefficient b of air resistance, we can view vy, as
an inverse measure of the importance of air resistance — the larger the air resistance,
the smaller v,.,, again just as you would expect.

EXAMPLE 2.2 Terminal Speed of Small Liquid Drops

Find the terminal speed of a tiny oildrop in the Millikan oildrop experiment
(diameter D = 1.5 um and density o = 840 kg/m?). Do the same for a small
drop of mist with diameter D = 0.2 mm.

From Example 2.1 we know that the linear drag is dominant for these objects,
so the terminal speed is given by (2.26). According to (2.4), b = BD where
B = 1.6 x 10~* (in ST units). The mass of the drop is m = o 7 D3/6. Thus (2.26)
becomes

D2
Vi = Q’; ; & [for linear drag]. (2.27)
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This interesting result shows that, for a given density, the terminal speed is
proportional to D?. This implies that, once air resistance has become important,
a large sphere will fall faster than a small sphere of the same density.?

Putting in the numbers, we find for the oildrop

_(840) x 7 x (L5 x 1076)% x (9.8)
er 6 x (1.6 x 10~%) B

6.1 x 107> m/s [oildrop].

In the Millikan oildrop experiment, the oildrops fall exceedingly slowly, so their
speed can be measured by simply watching them through a microscope.
Putting in the numbers for the drop of mist, we find similarly that

Vier = 1.3m/s [drop of mist]. (2.28)

This speed is representative for a fine drizzle. For a larger raindrop, the terminal
speed would be appreciably larger, but with a larger (and hence also faster) drop,
the quadratic drag would need to be included in the calculation to get a reliable
value for v,.

AR e e RS

S

So far, we have discussed the terminal speed of a projectile (moving vertically),
but we must now discuss how the projectile approaches that speed. This is determined
by the equation of motion (2.25) which we can rewrite as

mi, = —b(v, — V). (2.29)

(Remember that v,,, = mg/b.) This differential equation can be solved in several ways.
(For one alternative see Problem 2.9.) Perhaps the simplest is to note that it is almost
the same as Equation (2.15) for the horizontal motion, except that on the right we now
have (v, — vy,) instead of v,. The solution for the horizontal case was the exponential
function (2.20). The trick to solving our new vertical equation (2.29) is to introduce
the new variable u = (v, — vy.,), which satisfies mit = —bu (because v, is constant).
Since this is exactly the same as Equation (2.15) for the horizontal motion, the solution
for u is the same exponential, u = Ae~'/T. [Remember that the constant k in (2.20)
became k = 1/7.] Therefore,

— Ae"l/T
Uy — Vper = A€ 77.

y

When t =0, v, = vy, 50 A = v, — vy, and our final solution for v, as a function of
tis

V(1) = Vger + (Vyo — Ver)e T (2.30)

=vy0e T+ v (1— 7). (2.31)

2'We are here assuming that the drag force is linear, but the same qualitative conclusion follows
for a quadratic drag force. (Problem 2.24.)
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A Uy

Vter T--""""""""""----zo====

T 2T 3T

Figure 2.6 When an object is dropped in a medium with
linear resistance, v, approaches its terminal value vy, as
shown.

This second expression gives v, (¢) as the sum of two terms: The first is equal to v,
when ¢ = 0, but fades away to zero as ¢ increases; the second is equal to zero when
t = 0, but approaches v, as ¢ — o0. In particular, as t — 00,

V(1) = Uy (2.32)

just as we anticipated.
Let us examine the result (2.31) in a little more detail for the case that v,, = 0;
that is, the projectile is dropped from rest. In this case (2.31) reads

v, (1) = v (1 — e777). (2.33)
This result is plotted in Figure 2.6, where we see that v, starts out from 0 and

approaches the terminal speed, v, — v, asymptotically as t — oo. The significance
of the time 7 for a falling body is easily read off from (2.33). When t = 7, we see that

vy = V(1 — €7) = 0630, .

That is, in a time 7, the object reaches 63% of the terminal speed. Similar calculations
give the following results:

time percent

t of v,
0 0

T 63%
27 86%
3t 95%

Of course, the object’s speed never actually reaches vy, but 7 is a good measure of
how fast the speed approaches v,,,. In particular, when ¢ = 37 the speed is 95% of vy,
and for many purposes we can say that after a time 37 the speed is essentially equal
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EXAMPLE 2.3 Characteristic Time for Two Liquid Drops

Find the characteristic times, t, for the oildrop and drop of mist in Example 2.2.
The characteristic time 7 was defined in (2.22) as t = m/b, and v, wWas
defined in (2.26) as v, = mg/b. Thus we have the useful relation

Uter = 87T (2.34)

Notice that this relation lets us interpret vy, as the speed a falling object would
acquire in a time 7, if it had a constant acceleration equal to g. Also note that,
like vy, the time 7 is an inverse indicator of the importance of air resistance:
When the coefficient b of air resistance is small, both v, and t are large; when
b is large, both v, and t are small.

For our present purposes, the importance of (2.34) is that, since we have
already found the terminal velocities of the two drops, we can immediately find
the values of 7. For the Millikan oildrop, we found that v, = 6.1 x 107> m/s,
therefore

-5
T = Yter __ u =62 x107%s [oildrop].
g 9.8

After falling for just 20 microseconds, this oildrop will have acquired 95% of
its terminal speed. For almost every purpose, the oildrop always travels at its
terminal speed.

For the drop of mist of Example 2.2, the terminal speed was v, = 1.3 m/s
and so T = v, /g &~ 0.13 s. After about 0.4 s, the drop will have acquired 95%
of its terminal speed.

Whether or not our falling object starts from rest, we can find its position y as a
function of time by integrating the known form (2.30) of v,

Uy(t) = Vger + (vyo - vter)e_t/r'

Assuming that the projectile’s initial position is y = 0, it immediately follows that

t
Y0 = [ 0,0)ar
0
= Vet + (V) — V)T (1= €7/7). (2.35)
This equation for y(¢) can now be combined with Equation (2.23) for x(¢) to give

us the orbit of any projectile, moving both horizontally and vertically, in a linear
medium.
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2.3 Trajectory and Range in a Linear Medium

We saw at the begining of the last section that the equation of motion for a projectile
moving in any direction resolves into two separate equations, one for the horizontal
and one for the vertical motion [Equations (2.15) and (2.16)]. We have solved each
of these separate equations in (2.23) and (2.35), and we can now put these solutions
together to give the trajectory of an arbitrary projectile moving in any direction. In
this discussion it is marginally more convenient to measure y vertically upward, in
which case we must reverse the sign of v,.,. (Make sure you understand this point.)
Thus the two equations of the orbit become

X(1) = vt (1-er) } (2.36)

y@) = (vyo + vter)r (1 - e_t/z) — Verl -

You can eliminate ¢ from these two equations by solving the first for # and then
substituting into the second. (See Problem 2.17.) The result is the equation for the
trajectory:

Vyo +V
y= ot Ve 4y i (1— : ) 237)

U)CO vaT

This equation is probably too complicated to be especially illuminating, but I have
plotted it as the solid curve in Figure 2.7, with the help of which you can understand
some of the features of (2.37). For example, if you look at the second term on the right
of (2.37), you will see that as x — v,,T the argument of the log function approaches
zero; therefore, the log term and hence y both approach —oo. That is, the trajectory
has a vertical asymptote at x = v,,T, as you can see in the picture. I leave it as an
exercise (Problem 2.19) for you to check that if air resistance is switched off (v, and
7 both approach infinity), the trajectory defined by (2.37) does indeed approach the
dashed trajectory corresponding to zero air resistance.

Horizontal Range

A standard (and quite interesting) problem in elementary physics courses is to show
that the horizontal range R of a projectile (subject to no air resistance of course) is

2vxovyo

Ry = [no air resistance] (2.38)
8

where R,  stands for the range in a vacuum. Let us see how this result is modified by
air resistance.

The range R is the value of x when y as given by (2.37) is zero. Thus R is the
solution of the equation

Uyo + Vger

R+ vetln (1 _ R ) =0. (2.39)

VT

v X0

X0
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Figure 2.7 The trajectory of a projectile subject to a linear drag
force (solid curve) and the corresponding trajectory in a vacuum
(dashed curve). At first the two curves are very similar, but as ¢
increases, air resistance slows the projectile and pulls its trajec-
tory down, with a vertical asymptote at x = v, ,7. The horizontal
range of the projectile is labeled R, and the corresponding range
in vacuum R, ..

This is a transcendental equation and cannot be solved analytically, that s, in terms of
well known, elementary functions such as logs, or sines and cosines. For a given choice
of parameters, it can be solved numerically with a computer (Problem 2.22), but this
approach usually gives one little sense of how the solution depends on the parameters.
Often a good alternative is to find some approximation that allows an approximate
analytic solution. (Before the advent of computers, this was often the only way to find
out what happens.) In the present case, it is often clear that the effects of air resistance
should be small. This means that both v, and 7 are large and the second term in the
argument of the log function is small (since it has 7 in its denominator). This suggests
that we expand the log in a Taylor series (see Problem 2.18):

In(l — €) = — (e il ) . (2.40)

We can use this expansion for the log term in (2.39), and, provided t is large enough,
we can surely neglect the terms beyond €. This gives the equation

Ve 4 v 2 R\’
[u:lR—vterr R +1(R ) +1( ) =0. (241
Vio VioT 2 \ VT 3\ v,T

This equation can be quickly tidied up. First, the second term in the first bracket
cancels the first term in the second. Next, every term contains a factor of R. This
implies that one solution is R = 0, which is correct — the height y is zero when x = 0.
Nevertheless, this is not the solution we are interested in, and we can divide out the
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common factor of R. A little rearrangement (and replacement of v,../7 by g) lets us
rewite the equation as

R2. (2.42)

g B 3v,0T

This may seem a perverse way to write a quadratic equation for R, but it leads us
quickly to the desired approximate solution. The point is that the second term on the
right is very small. (In the numerator R is certainly no more than R,,. and we are
assuming that 7 in the denominator is very large.) Therefore, as a first approximation
we get

N 20,00y

8

= R,,. (2.43)

This is just what we expected: For low air resistance, the range is close to R,.. But
with the help of (2.42) we can now get a second, better approximation. The last term of
(2.42) is the required correction to R,,.; because it is already small, we would certainly
be satisfied with an approximate value for this correction. Thus, in evaluating the last
term of (2.42), we can replace R with the approximate value R ~ R,,., and we find
as our second approximation [remember that the first term in (2.42) is just R,.]

2

R~ Rvac - '_'—(Rvac)z
X0
4 v
=R, (1 — _LO) _ (2.44)
Vter

(To get the second line, I replaced the second R, in the previous line by 2v,,v,,/8
and tg by v,,.) Notice that the correction for air resistance always makes R smaller
than R,,., as one would expect. Notice also that the correction depends only on the
ratio v,,/v,,. More generally, it is easy to see (Problem 2.32) that the importance of
air resistance is indicated by the ratio v/v,, of the projectile’s speed to the terminal
speed. If v/v,, < 1 throughout the flight, the effect of air resistance is very small;
if v/v,, is around 1 or more, air resistance is almost certainly important [and the
approximation (2.44) is certainly no good].

R

R SR

EXAMPLE 2.4 Range of Small Metal Pellets

I flick a tiny metal pellet with diameter d = 0.2 mm and v = 1 m/s at 45°. Find
its horizontal range assuming the pellet is gold (density ¢ ~ 16 g/cm?). What if
it is aluminum (density o & 2.7 g/cm>)?

In the absence of air resistance, both pellets would have the same range,

2vx0vy0

= = 10.2cm.
g

vac
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For gold, Equation (2.27) gives (as you can check) v, ~ 21 m/s. Thus the
correction term in (2.44) is

v
iﬂzfxwgo_(ﬁ
3V 3 21

That is, air resistance reduces the range by 5% to about 9.7 cm. The density
of aluminum is about 1/6 times that of gold. Therefore the terminal speed is
one sixth as big, and the correction for aluminum is 6 times greater or about
30%, giving a range of about 7 cm. For the gold pellet the correction for air
resistance is quite small and could perhaps be neglected; for the aluminum pellet,
the correction is still small, but is certainly not negligible.

SEETRRRRRR R R

2.4 Quadratic Air Resistance

In the last two sections we have developed a rather complete theory of projectiles
subject to a linear drag force, f = —bv. While we can find examples of projectiles for
which the drag is linear (notably very small objects, such as the Millikan oildrop), for
most of the more obvious examples of projectiles (baseballs, footballs, cannonballs,
and the like) it is a far better approximation to say that the drag is pure quadratic,
f = —cv?V. We must, therefore, develop a corresponding theory for a quadratic drag
force. On the face of it, the two theories are not so very different. In either case we
have to solve the differential equation

mv =mg +f, (2.45)

and in both cases this is a first-order differential equation for the velocity v, with f
depending in a relatively simple way on v. There is, however, an important difference.
In the linear case (f = —bv), Equation (2.45) is a linear differential equation, inas-
much as the terms that involve v are all linear in v or its derivatives. In the quadratic
case, Equation (2.45) is, of course, nonlinear. And it turns out that the mathemati-
cal theory of nonlinear differential equations is significantly more complicated than
the linear theory. As a practical matter, we shall find that for the case of a general
projectile, moving in both the x and y directions, Equation (2.45) cannot be solved
in terms of elementary functions when the drag is quadratic. More generally, we
shall see in Chapter 12 that for more complicated systems, nonlinearity can lead to
the astonishing phenomenon of chaos, although this does not happen in the present
case.

In this section, I shall start with the same two special cases discussed in Section 2.2,
a body that is constrained to move horizontally, such as a railroad car on a horizontal
track, and a body that moves vertically, such as a stone dropped from a window (both
now with quadratic drag forces). We shall find that in these two especially simple cases
the differential equation (2.45) can be solved by elementary means, and the solutions
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introduce some important techniques and interesting results. I shall then discuss briefly
the general case (motion in both the horizontal and vertical directions), which can be
solved only numerically.

Horizontal Motion with Quadratic Drag

Let us consider a body moving horizontally (in the positive x direction), subject to
a quadratic drag and no other forces. For example, you could imagine a cycle racer,
who has crossed the finishing line and is coasting to a stop under the influence of air
resistance. To the extent that the cycle is well lubricated and tires well inflated, we
can ignore ordinary friction,? and, except at very low speeds, air resistance is purely
quadratic. The x component of the equation of motion is therefore (I’ll abbreviate v,
to v)

m— = —cv”. (2.46)

If we divide by v? and multiply by d, we get an equation in which only the variable
v appears on the left and only ¢ on the right:*
m@ = —cdt. 2.47)
02
This trick — of rearranging a differential equation so that only one variable appears
on the left and only the other on the right — is called separation of variables. When
it is possible, separation of variables is often the simplest way to solve a first-order
differential equation, since the solution can be found by simple integration of both
sides.
Integrating Equation (2.47) we find

vd/ t
v
m _/2:_C/dt/
v, U 0

where v, is the initial velocity at # = 0. Notice that I have written both sides as definite
integrals, with the appropriate limits, so that I shan’t have to worry about any constants
of integration. I have also renamed the variables of integration as v’ and ¢’ to avoid

3 AsIshall discuss shortly, when the cyclist slows down to a stop, air resistance becomes smaller,
and eventually friction becomes the dominant force. Nevertheless, at speeds around 10 mph or more,
it is a fair approximation to ignore everything but the quadratic air resistance.

4 In passing from (2.46) to (2.47), I have treated the derivative dv/dt as if it were the quotient of
two separate numbers, dv and dt. As you are certainly aware this cavalier proceeding is not strictly
correct. Nevertheless, it can be justified in two ways. First, in the theory of differentials, it is in fact
true that dv and dr are defined as separate numbers (differentials), such that their quotient is the
derivative dv/dt. Fortunately, it is quite unnecessary to know about this theory. As physicists we
know that dv/dt is the limit of Av/At, as both Av and Ar become small, and I shall take the view
that dv is just shorthand for Av (and likewise dt for At), with the understanding that it has been
taken small enough that the quotient dv/dt is within my desired accuracy of the true derivative. With
this understanding, (2.47), with dv on one side and d¢ on the other, makes perfectly good sense.
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confusion with the upper limits v and ¢. Both of these integrals are easily evaluated,

and we find
m (l — 1) = —ct (2.48)

Vv, v
or, solving for v,

v v

= ° (2.49)
1+cyt/m 14t/t

o]

v(t) =

where I have introduced the abbreviation t for the combination of constants

T = U [for quadratic drag]. (2.50)

As you can easily check, 7 is a time, with the significance that when 7 = 7 the velocity
is v = v,/2. Notice that this parameter 7 is different from the 7 introduced in (2.22) for
motion subject to linear air resistance; nevertheless, both parameters have the same
general significance as indicators of the time for air resistance to slow the motion
appreciably.

To find the bicycle’s position x, we have only to integrate v to give (as you should
check)

x() =x,+ ] v(t)dr
0
=v,7In(1+4+1¢/7), (2.51)

if we take the initial position x, to be zero. Figure 2.8 shows our results for v and
x as functions of ¢. It is interesting to compare these graphs with the corresponding
graphs of Figure 2.4 for a body coasting horizontally but subject to a linear resistance.
Superficially, the two graphs for the velocity look similar. In particular, both go to
zero as ¢ — 0o. But in the linear case v goes to zero exponentially, whereas in the
quadratic case it does so only very slowly, like 1/¢. This difference in the behavior
of v manifests itself quite dramatically in the behavior of x. In the linear case, we

(a) (b)

Figure 2.8 The motion of a body, such as a bicycle, coasting
horizontally and subject to a quadratic air resistance. (a) The
velocity is given by (2.49) and goes to zero like 1/¢ as t — o0.
(b) The position is given by (2.51) and goes to infinity as t — ©0.
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saw that x approaches a finite limit as # — oo, but it is clear from (2.51) that in the
quadratic case x increases without limit as t — oo.

The striking difference in the behavior of x for quadratic and linear drags is easy
to understand qualitatively. In the quadratic case, the drag is proportional to v. Thus
as v gets small, the drag gets very small — so small that it fails to bring the bicyle
to rest at any finite value of x. This unexpected behavior serves to highlight that a
drag force that is proportional to v? at all speeds is unrealistic. Although the linear
drag and ordinary friction are very small, nevertheless as v — 0 they must eventually
become more important than the v? term and cannot be ignored. In particular, one or
another of these two terms (friction in the case of a bicycle) ensures that no real body
can coast on to infinity!

Vertical Motion with Quadratic Drag

The case that an object moves vertically with a quadratic drag force can be solved in
much the same way as the horizontal case. Consider a baseball that is dropped from a
window in a high tower. If we measure the coordinate y vertically down, the equation
of motion is (I'll abbreviate v, to v now)

mv =mg — cv’. (2.52)

Before we solve this equation, let us consider the ball’s terminal speed, the speed at
which the two terms on the right of (2.52) just balance. Evidently this must satisfy

cv? = mg, whose solution is

Ve = | 28 (2.53)
c
For any given object (given m, g, and c), this lets us calculate the terminal speed. For
example, for a baseball it gives (as we shall see in a moment) v, = 35 m/s, or nearly
80 miles per hour.
We can tidy the equation of motion (2.52) a little by using (2.53) to replace ¢ by
mg/v 2, and canceling the factors of m:

2
V=g (1 — %) . (2.54)
Uter

This can be solved by separation of variables, just as in the case of horizontal
motion: First we can rewrite it as

= gdt. (2.55)

This is the desired separated form (only v on the left and only r on the right) and
we can simply integrate both sides.> Assuming the ball starts from rest, the limits of

3 Notice that in fact any one-dimensional problem where the net force depends only on the
velocity can be solved by separation of variables, since the equation mv = F(v) can always be
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integration are 0 and v on the left and 0 and # on the right, and we find (as you should
verify — Problem 2.35)

Zter arctanh (i) =1 (2.56)
8 Uter

where “arctanh” denotes the inverse hyperbolic tangent. This particular integral can be
evaluated alternatively in terms of the natural log function (Problem 2.37). However,
the hyperbolic functions, sinh, cosh, and tanh, and their inverses arcsinh, arccosh, and
arctanh, come up so often in all branches of physics that you really should learn to use
them. If you have not had much exposure to them, you might want to look at Problems
2.33 and 2.34, and study graphs of these functions.

Equation (2.56) can be solved for v to give

U = VU, tanh (g_t) . (2.57)
Uter
To find the position y, we just integrate v to give
2
y = Qe [cosh (g—tﬂ . (2.58)
8 Uter

While both of these two formulas can be cleaned up a little (see Problem 2.35), they
are already sufficient to work the following example.

PR i R

EXAMPLE 2.5 A Baseball Dropped from a High Tower

Find the terminal speed of a baseball (mass m = 0.15 kg and diameter D =7
cm). Make plots of its velocity and position for the first six seconds after it is
dropped from a tall tower.

The terminal speed is given by (2.53), with the coefficient of air resistance ¢
given by (2.4) as ¢ = y D? where y = 0.25 N-s?>/m*. Therefore

2
N \/ O15kg) x O8mIs) o oo
y D? (0.25N-s*/m*) x (0.07 m)?2

or nearly 80 miles per hour. It is interesting to note that fast baseball pitchers
can pitch a ball considerably faster than v,,. Under these conditions, the drag

force is actually greater than the ball’s weight!
The plots of v and y can be made by hand, but are, of course, much easier with
the help of computer software such as Mathcad or Mathematica that can make the

plots for you. Whatever method we choose, the results are as shown in Figure 2.9,
where the solid curves show the actual velocity and position while the dashed

curves are the corresponding values in a vacuum. The actual velocity levels out,

written as m dv/F (v) = dt. Of course there is no assurance that this can be integrated analytically

if F(v) is too complicated, but it does guarantee a straightforward numerical solution at worst. See
Problem 2.7.
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Figure2.9 The motion of a baseball dropped from the top of a high tower (solid
curves). The corresponding motion in a vacuum is shown with long dashes.
(a) The actual velocity approaches the ball’s terminal velocity v, = 35 m/s as
t — 00. (b) The graph of position against time falls further and further behind
the corresponding vacuum graph. When ¢ = 6 s, the baseball has dropped about
130 meters; in a vacuum, it would have dropped about 180 meters.

approaching the terminal value v, = 35 m/s as t — oo, whereas the velocity
in a vacuum would increase without limit. Initially, the position increases just
as it would in a vacuum (that is, y = 1 gt?), but falls behind as v increases and
the air resistance becomes more important. Eventually, y approaches a straight
hne of the form y = v+ const. (See Problem 2.35.)

S R R R S R R B

Quadratic Drag with Horizontal and Vertical Motion

The equation of motion for a projectile subject to quadratic drag,

mt = mg — cv’V
=mg — Ccvv, (2.60)

resolves into its horizontal and vertical components (with y measured vertically

upward) to give

mo, = —c vzt vl

(2.61)
mv, = -—mg-—c /v +vyvy

These are two differential equations for the two unknown functions v, (¢) and v, (¢),
but each equation involves both v, and v,. In particular, neither equation is the same
as for an object that moves only in the x direction or only in the y direction. This
means that we cannot solve these two equations by simply pasting together our two
separate solutions for horizontal and vertical motion. Worse still, it turns out that
the two equations (2.61) cannot be solved analytically at all. The only way to solve
them is numerically, which we can only do for specified numerical initial conditions
(that is, specified values of the initial position and velocity). This means that we
cannot find the general solution; all we can do numerically is to find the particular
solution corresponding to any chosen initial conditions. Before I discuss some general
properties of the solutions of (2.61), let us work out one such numerical solution.
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EXAMPLE 2.6 Trajectory of a Baseball

The baseball of Example 2.5 is now thrown with velocity 30 m/s (about 70 mi/h)
at 50° above the horizontal from a high cliff. Find its trajectory for the first eight
seconds of flight and compare with the corresponding trajectory in a vacuum. If
the same baseball was thrown with the same initial velocity on horizontal ground
how far would it travel before landing? That is, what is its horizontal range?

We have to solve the two coupled differential equations (2.61) with the initial
conditions

Vyo = Vo086 = 19.3m/s and v, = v,sin6 = 23.0 m/s
and x, = y, = 0 (if we put the origin at the point from which the ball is thrown).
This can be done with systems such as Mathematica, Matlab, or Maple, or with
programming languages such as “C” or Fortran. Figure 2.10 shows the resulting
trajectory, found using the function “NDSolve” in Mathematica.

Several features of Figure 2.10 deserve comment. Obviously the effect of
air resistance is to lower the trajectory, as compared to the vacuum trajectory
(shown dashed). For example, we see that in a vacuum the high point of the
trajectory occurs at ¢ & 2.3 s and is about 27 m above the starting point; with air
resistance, the high point comes just before t = 2.0 s and is at about 21 m. In
a vacuum, the ball would continue to move indefinitely in the x direction. The

y(m)
] oty N
- \.\
0 IR S R Ll oy x(m)
) 20 120
: .
-50 N
J \\
~100 -
B \\\
- ‘.\4—[:8

Figure2.10 Trajectory of a baseball thrown off a cliff and subject
to quadratic air resistance (solid curve). The initial velocity is 30
m/s at 50° above the horizontal; the terminal speed is 35 m/s. The
dashed curve shows the corresponding trajectory in a vacuum.
The dots show the ball’s position at one-second intervals. Air
resistance slows the horizontal motion, so that the ball approaches
a vertical asymptote just beyond x = 100 meters.
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effect of air resistance is to slow the horizontal motion so that x never moves to
the right of a vertical asymptote near x = 100 m.

The horizontal range of the baseball is easily read off the figure as the value
of x when y returns to zero. We see that R &~ 59 m, as opposed to the range in
vacuum, R, ~ 90 m. The effect of air resistance is quite large in this example,
as we might have anticipated: The ball was thrown with a speed only a little
less than the terminal speed (30 vs 35 m/s), and this means that the force of air
resistance is only a little less than that of gravity. This being the case, we should
expect air resistance to change the trajectory apprec1ably

e 5 S R e

R N R R

This example illustrates several of the general features of projectile motion with a
quadratic drag force. Although we cannot solve analytically the equations of motion
(2.61) for this problem, we can use the equations to prove various general properties
of the trajectory. For example, we noticed that the baseball reached a lower maximum
height, and did so sooner, than it would have in a vacuum. It is easy to prove that this
will always be the case: As long as the projectile is moving upward (v, > 0), the force
of air resistance has a downward y component. Thus the downward acceleration is
greater than g (its value in vacuum). Therefore a graph of v, against ¢ slopes down from
v, more quickly than it would in vacuum, as shown in Figure 2.11. This guarantees
that vy reaches zero sooner than it would in vacuum, and that the ball travels less
distance (in the y direction) before reaching the high point. That is, the ball’s high
point occurs sooner, and is lower, than it would be in a vacuum.

0 > Ll

Figure 2.11  Graph of v, against  for a projectile that is thrown
upward (v,, > 0) and is subject to a quadratic resistance (solid
curve). The dashed line (slope = —g) is the corresponding graph
when there is no air resistance. The projectile moves upward
until it reaches its maximum height when v, = 0. During this
time, the drag force is downward and the downward acceleration
is always greater than g. Therefore, the curve slopes more steeply
than the dashed line, and the projectile reaches its high point
sooner than it would in a vacuum. Since the area under the curve
is less than that under the dashed line, the projectile’s maximum
height is less than it would be in a vacuum.
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I claimed that the baseball of Example 2.6 approaches a vertical asymptote as
t — oo, and we can now prove that this is always the case. First, it is easy to
convince yourself that once the ball starts moving downward, it continues to accelerate
downward, with v, approaching —v, as ¢t — 00. At the same time v, continues to
decrease and approaches zero. Thus the square root in both of the equations (2.61)
approaches v,,,. In particular, when ¢ is large, the equation for v, can be approximated
by

_ Clter
m

v, R v, = —kv,

say. The solution of this equation is, of course, an exponential function, v, = Ae ™,

and we see that v, approaches zero very rapidly (exponentially) as + — oo. This
guarantees that x, which is the integral of v,

x(t) = / v, (1 dt',
0

approaches a finite limit as # — oo, and the trajectory has a finite vertical asymptote
as claimed.

2.5 Motion of a Charge in a Uniform Magnetic Field

Another interesting application of Newton’s laws, and (like projectile motion) an
application that lets me introduce some important mathematical methods, is the
motion of a charged particle in a magnetic field. I shall consider here a particle of
charge ¢ (which I shall usually take to be positive), moving in a uniform magnetic
field B that points in the z direction as shown in Figure 2.12. The net force on the
particle is just the magnetic force

F =¢gv x B, (2.62)

P
J

X

Figure2.12 A charged particle moving in a uniform mag-
netic field that points in the z direction.
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so the equation of motion can be written as
mv =qv x B. (2.63)

[As with projectiles, the force depends only on the velocity (not the position), so the
second law reduces to a first-order differential equation for v.]

As is so often the case, the simplest way to solve the equation of motion is to
resolve it into components. The components of v and B are

V= (v, vy, V,)
and
B = (0,0, B),
from which we can read off the components of v x B:
vx B= (vyB, —-v, B, 0).

Thus the three components of (2.63) are

mv, = qBv, (2.64)
mi)y = —gBuv, (2.65)
mv, = 0. (2.66)

The last of these says simply that v,, the component of the particle’s velocity in the
direction of B, is constant:

v, = const,

a result we could have anticipated since the magnetic force is always perpendicular to
B. Because v, is constant, we shall focus most of our attention on v, and v,,. In fact,
we can even think of them as comprising a two-dimensional vector (v,, vy), which is
just the projection of v onto the xy plane and can be called the fransverse velocity,

(vy, vy) = transverse velocity.

To simplify the equations (2.64) and (2.65) for v, and v,, I shall define the
parameter

w=18 (2.67)
m
which has the dimensions of inverse time and is called the cyclotron frequency. With

this notation, Equations (2.64) and (2.65) become

v, = wv

Y } (2.68)

These two coupled differential equations can be solved in a host of different ways.
I would like to describe one that makes use of complex numbers. Though perhaps
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imaginary

art .
P N = Vet IV,

o real part
v)(

Figure 213 The complex number n = v, + iv, is repre-
sented as a point in the complex plane. The arrow pointing
from O to n is literally a picture of the transverse velocity
vector (vy, v,).

not the easiest solution, this method has surprisingly wide application in many ar-
eas of physics. (For an alternative solution that avoids complex numbers, see Prob-
lem 2.54.)

The two variables v, and v, are, of course, real numbers. However, there is nothing
to prevent us from defining a complex number

n=uv, +iv, (2.69)

where i denotes the square root of —1 (called j by most engineers), i = v—1 (and
n is the Greek letter eta). If we draw the complex number 7 in the complex plane,
or Argand diagram, then its two components are v, and v, as shown in Figure 2.13;
in other words, the representation of 7 in the complex plane is a picture of the two-
dimensional transverse velocity (v,, vy).
The advantages of introducing the complex number 7 appear when we evaluate its
derivative. Using (2.68), we find that
1=V, + iV, = wv

y — lov, = —iw(v, + iv,)

or

n=—ion. (2.70)

We see that the two coupled equations for v, and v, have become a single equation for
the complex number 7. Furthermore, it is an equation of the now familiar form # = ku,
whose solution we know to be the exponential u = Ae*. Thus we can immediately
write down the solution for 7:

n=Ae ' (2.71)

Before we discuss the significance of this solution, I would like to review a few
properties of complex exponentials in the next section. If you are very familiar with
these ideas, by all means skip this material.
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2.6 Complex Exponentials

While you are certainly familiar with the exponential function e* for a real variable
x, you may not be so at home with ¢ when z is complex.® For the real case there are
several possible definitions of e* (for instance, as the function that is equal to its own
derivative). The definition that extends most easily to the complex case is the Taylor
series (see Problem 2.18)

2 Z3

. z

e=l+z+5+§+-'-. (2.72)
For any value of z, real or complex, large or small, this series converges to give a well-
defined value for ¢*. By differentiating it, you can easily convince yourself that it has
the expected property that it equals its own derivative. And one can show (not always
so easily) that it has all the other familiar properties of the exponential function — for
instance, that e?e® = e¢**%)_(See Problems 2.50 and 2.51.) In particular, the function
Ae** (with A and k any constants, real or complex) has the property that

4 (Aek) =k (4e=). (2.73)
dz

Since it satisfies this same equation whatever the value of A, it is, in fact, the
general solution of the first-order equation d f/dz = kf. At the end of the last section,
I introduced the complex number 7(r) and showed that it satisfied the equation
n = —iwn. We are now justified in saying that this guarantees that n must be the
exponential function anticipated in (2.71).

We shall be particularly concerned with the exponential of a pure imaginary
number, that is, ¢!’ where 6 is a real number. The Taylor series (2.72) for this function
reads

i0 L, @6 a6 o)
e"=1+1i60 + X + 3 + 2 + - (2.74)

Noting that i? = —1, i®* = —i, and so on, you can see that all of the even powers
in this series are real, while all of the odd powers are pure imaginary. Regrouping
accordingly, we can rewrite (2.74) to read

. 62 o 3 '
elez[1——+—+---]+i[9—%+---]. (2.75)

The series in the first brackets is the Taylor series for cos#, and that in the second
brackets is sin & (Problem 2.18). Thus we have proved the important relation:

¢ = cosf +isind. (2.76)

6 For a review of some elementary properties of complex numbers, see Problems 2.45 to 2.49.
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(a) (b)

Figure 2.14 (a) Euler’s formula, (2.76), implies that the complex num-
ber ¢'? lies on the unit circle (the circle of radius 1, centered on the origin
O) with polar angle 6. (b) The complex constant A = ae’® lies on a cir-
cle of radius a with polar angle 8. The function n(¢) = Ae™** lies on the
same circle but with polar angle (§ — wt) and moves clockwise around
the circle as ¢ advances.

This result, known as Euler’s formula, is illustrated in Figure 2.14(a). Note especially
that the complex number ¢’? has polar angle # and, since cos’ 6 + sin”6 = 1, the
magnitude of e’ is 1; that is, e'° lies on the unit circle, the circle with radius 1 centered
at O.

Our main concern is with a complex number of the form 7 = Ae™'“". The co-
efficient A is a fixed complex number, which can be expressed as A = ae'®, where
a = |A] is the magnitude, and § is the polar angle of A, as shown in Figure 2.14(b).
(See Problem 2.45.) The number 7 can therefore be written as

n= Ae—ia)t — aeiﬁe—iwt — aei(S—-a}l). (277)

Thus 7 has the same magnitude as A (namely a), but has polar angle equal to (6 — wt),
as shown in Figure 2.14(b). As a function of ¢, the number n moves clockwise around
the circle of radius a with angular velocity w.

It is important that you get a good feel for the role of the complex constant A = ae
in (2.77): If A happened to equal 1, then n would be just n = e~'“, which lies on the
unit circle, moving clockwise with angular velocity o and starting from the real axis
(n=1) when t =0. If A = a is real but not equal to 1, then it simply magnifies the
unit circle to a circle of radius a, around which  moves with the same angular speed
and starting from the real axis, at n = a when ¢ = 0. Finally if A = ae'’, then the
effect of the angle é is to rotate n through the fixed angle 8, so that n starts outatz = 0
with polar angle §.

Armed with these mathematical results, we can now return to the charged particle
in a magnetic field.

i8
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2.7 Solution for the Charge in a B Field

Mathematically, the solution for the velocity v of our charged particle in a B field is
complete, and all that remains is to interpret it physically. We already know that v,,
the component along B, is constant. The components (v,, v,) transverse to B we have
represented by the complex number n = v, + iv,, and we have seen that Newton’s
second law implies that n has the time dependence n = Ae™'“!, moving uniformly
around the circle of Figure 2.14(b). Now, the arrow shown in that figure, pointing
from O to 7, is in fact a pictorial representation of the transverse velocity (v,, vy).
Therefore this transverse velocity changes direction, turning clockwise, with constant
angular velocity’ w = g B/m and with constant magnitude. Because v, is constant,
this suggests that the particle undergoes a spiralling, or helical, motion. To verify this,
we have only to integrate v to find r as a function of 7.
That v, is constant implies that

z(t) = 25 + V,0t. (2.78)
The motion of x and y is most easily found by introducing another cofnplex number
E=x+1iy

where ¢ is the Greek letter xi. In the complex plane, & is a picture of the transverse
position (x, y). Clearly, the derivative of ¢ is 7, that is, é = 1. Therefore,

5=/ndt=/Ae“'“”dt
4
= 2ot | constant. (2.79)
)

If we rename the coefficient iA/w as C and the constant of integration as X + iY,
this implies that

x +iy=Ce ' + (X +iY).

By redefining our origin so that the z axis goes through the point (X, Y), we can
eliminate the constant term on the right to give

x +iy=Ce ', (2.80)
and, by setting ¢ = 0, we can identify the remaining constant C as
C=x,+1iy,.

This result is illustrated in Figure 2.15. We see there that the transverse position (x, y)
moves clockwise round a circle with angular velocity w = g B/m. Meanwhile z as
given by (2.78) increases steadily, so the particle actually describes a uniform helix
whose axis is parallel to the magnetic field.

71 am assuming the charge q is positive; if g is negative, then w = g B/ m is negative, meaning
that the transverse velocity rotates counterclockwise.
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Figure 2.15 Motion of a charge in a uniform magnetic
field in the z direction. The transverse position (x, y)
moves around a circle as shown, while the coordinate z
moves with constant velocity into or out of the page.

There are many examples of the helical motion of a charged particle along a
magnetic field; for example, cosmic-ray particles (charged particles hitting the earth
from space) can get caught by the earth’s magnetic field and spiral north or south
along the field lines. If the z component of the velocity happens to be zero, then
the spiral reduces to a circle. In the cyclotron, a device for accelerating charged
particles to high energies, the particles are trapped in circular orbits in this way. They
are slowly accelerated by the judiciously timed application of an electric field. The
angular frequency of the orbit is, of course, @ = g B/m (which is why this is called
the cyclotron frequency). The radius of the orbit is
v_mv _p

r=—=—=- (2.81)
w gB ¢gB

This radius increases as the particles accelerate, so that they eventually emerge at the
outer edge of the circular magnets that produce the magnetic field.

The same method that we have used here for a charge in a magnetic field can
also be used for a particle in magnetic and electric fields, but since this complication
adds nothing to the method of solution, I shall leave you to try it for yourself in
Problems 2.53 and 2.55.

Principal Definitions and Equations of Chapter 2

Linear and Quadratic Drags

Provided the speed v is well below that of sound, the magnitude of the drag force
f = — f(v)V on an object moving through a fluid is usually well approximated as

S = fiin + fquad

where

fin=bv=pBDv and f.4= cv? = yD*?.  [Egs. (2.2) to (2.6)]
q
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Here D denotes the linear size of the object. For a sphere, D is the diameter and, for
a sphere in air at STP, 8 = 1.6 x 107* N-s/m? and y = 0.25 N-s*/m*.

The Lorentz Force on a Charged Particle

F=g(E+vxB). [Eq.(2.62)& Problem 2.53]

Problems for Chapter 2

Stars indicate the approximate level of difficulty, from easiest (%) to most difficult (xxx).

SECTION 2.1 Air Resistance

2.1 * When a baseball flies through the air, the ratio f,,,q4/flin 0f the quadratic to the linear drag force
is given by (2.7). Given that a baseball has diameter 7 cm, find the approximate speed v at which the
two drag forces are equally important. For what approximate range of speeds is it safe to treat the drag
force as purely quadratic? Under normal conditions is it a good approximation to ignore the linear
term? Answer the same questions for a beach ball of diameter 70 cm.

2.2 * The origin of the linear drag force on a sphere in a fluid is the viscosity of the fluid. According
to Stokes’s law, the viscous drag on a sphere is

Siin = 3mnDv (2.82)

where 7 is the viscosity® of the fluid, D the sphere’s diameter, and v its speed. Show that this expression
reproduces the form (2.3) for f};,, with b given by (2.4) as b = B D. Given that the viscosity of air at
STPis n = 1.7 x 107 N-s/m?, verify the value of B given in (2.5).

2.3 * (a) The quadratic and linear drag forces on a moving sphere in a fluid are given by (2.84) and
(2.82) (Problems 2.4 and 2.2). Show that the ratio of these two kinds of drag force can be written as
Jquad/ fin = R /48.° where the dimensionless Reynolds number R is

_ Dvo
n

R (2.83)

where D is the sphere’s diameter, v its speed, and ¢ and 7 are the fluid’s density and viscosity. Clearly
the Reynolds number is a measure of the relative importance of the two kinds of drag.!® When R is

8 For the record, the viscosity 1 of a fluid is defined as follows: Imagine a wide channel along which fluid is
flowing (x direction) such that the velocity v is zero at the bottom (y = 0) and increases toward the top (y = k), so
that successive layers of fluid slide across one another with a velocity gradient dv/dy. The force F with which an
area A of any one layer drags the fluid above it is proportional to A and to dv/dy, and ) is defined as the constant
of proportionality; thatis, F = n Adv/dy.

°The numerical factor 48 is for a sphere. A similar result holds for other bodies, but the numerical factor is
different for different shapes.

10The Reynolds number is usually defined by (2.83) for flow involving any object, with D defined as a typical
linear dimension. One sometimes hears the claim that R is the ratio fqyaa/fiin- SInce fquaa/ fiin = R/48 for a sphere,
this claim would be better phrased as “R is roughly of the order of fqya4/fiin.”
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very large, the quadratic drag is dominant and the linear can be neglected; vice versa when R is very
small. (b) Find the Reynolds number for a steel ball bearing (diameter 2 mm) moving at 5 cm/s through
glycerin (density 1.3 g/cm?® and viscosity 12 N-s/m? at STP).

2.4 »x The origin of the quadratic drag force on any projectile in a fluid is the inertia of the fluid that the
projectile sweeps up. (a) Assuming the projectile has a cross-sectional area A (normal to its velocity)
and speed v, and that the density of the fluid is o, show that the rate at which the projectile encounters
fluid (mass/time) is g Av. (b) Making the simplifying assumption that all of this fluid is accelerated
to the speed v of the projectile, show that the net drag force on the projectile is 0 Av?. It is certainly
not true that all the fluid that the projectile encounters is accelerated to the full speed v, but one might
guess that the actual force would have the form

fquad = KQAU2 (2.84)

where « is a number less than 1, which would depend on the shape of the projectile, with « small for
a streamlined body, and larger for a body with a flat front end. This proves to be true, and for a sphere
the factor « is found to be k = 1/4. (¢) Show that (2.84) reproduces the form (2.3) for f .4, With ¢
given by (2.4) as ¢ = y D?. Given that the density of air at STP is ¢ = 1.29 kg/m? and that k = 1/4 for
a sphere, verify the value of y given in (2.6).

SECTION 2.2 Linear Air Resistance

2.5 Suppose that a projectile which is subject to a linear resistive force is thrown vertically down
with a speed v, which is greater than the terminal speed vy.,. Describe and explain how the velocity
varies with time, and make a plot of v, against ¢ for the case that vy, = 2V

2.6 » (a) Equation (2.33) gives the velocity of an object dropped from rest. At first, when v, is small,
air resistance should be unimportant and (2.33) should agree with the elementary result v, = gt
for free fall in a vacuum. Prove that this is the case. [Hint: Remember the Taylor series for e* =
14+ x +x2/2!+ x3/3! 4 - - -, for which the first two or three terms are certainly a good approximation
when x is small.] (b) The position of the dropped object is given by (2.35) with v,,, = 0. Show similarly
that this reduces to the familiar y = %gt2 when ¢ is small.

2.7 * There are certain simple one-dimensional problems where the equation of motion (Newton’s
second law) can always be solved, or at least reduced to the problem of doing an integral. One of these
(which we have met a couple of times in this chapter) is the motion of a one-dimensional particle subject
to a force that depends only on the velocity v, that is, F = F (v). Write down Newton’s second law and
separate the variables by rewriting it as m dv/F (v) = dt. Now integrate both sides of this equation and

show that
/U dv/
t=m .
v, F(v")

Provided you can do the integral, this gives ¢ as a function of v. You can then solve to give v as a
function of ¢. Use this method to solve the special case that F'(v) = F,, a constant, and comment on
your result. This method of separation of variables is used again in Problems 2.8 and 2.9.

2.8 A mass m has velocity v, at time # = 0 and coasts along the x axis in a medium where the drag
force is F(v) = —cv*?. Use the method of Problem 2.7 to find v in terms of the time ¢ and the other
given parameters. At what time (if any) will it come to rest?
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2.9* We solved the differential equation (2.29), mv, = —b(vy, — vy,), for the velocity of an object
falling through air, by inspection — a most respectable way of solving differential equations. Never-
theless, one would sometimes like a more systematic method, and here is one. Rewrite the equation in
the “separated” form

mdvy
——— = —bdt
Uy = Vier

and integrate both sides from time 0 to # to find v,, as a function of ¢. Compare with (2.30).

2.10 *x For a steel ball bearing (diameter 2 mm and density 7.8 g/cm?) dropped in glycerin (density
1.3 g/cm? and viscosity 12 N-s/m? at STP), the dominant drag force is the linear drag given by (2.82)
of Problem 2.2. (a) Find the characteristic time 7 and the terminal speed v,,. [In finding the latter,
you should include the buoyant force of Archimedes. This just adds a third force on the right side of
Equation (2.25).] How long after it is dropped from rest will the ball bearing have reached 95% of its
terminal speed? (b) Use (2.82) and (2.84) (with k = 1/4 since the ball bearing is a sphere) to compute
the ratio fju,q/ fiin at the terminal speed. Was it a good approximation to neglect fgyq?

2.11 »x Consider an object that is thrown vertically up with initial speed v, in a linear medium.
(a) Measuring y upward from the point of release, write expressions for the object’s velocity v, (¢)
and position y(¢). (b) Find the time for the object to reach its highest point and its position y,,,, at that
point. (¢) Show that as the drag coefficient approaches zero, your last answer reduces to the well-known
result y .. = %voz /g for an object in the vacuum. [Hint: If the drag force is very small, the terminal
speed is very big, so v,/v,, is very small. Use the Taylor series for the log function to approximate
In(1+45)by s — 5‘52. (For a little more on Taylor series see Problem 2.18.)]

2.12 »x Problem 2.7 is about a class of one-dimensional problems that can always be reduced to doing
an integral. Here is another. Show that if the net force on a one-dimensional particle depends only on
position, F = F(x), then Newton’s second law can be solved to find v as a function of x given by

2 X
V=12 += f F(x')dx'. (2.85)
m Jx,

[Hint: Use the chain rule to prove the following handy relation, which we could call the “v dv/dx rule”:
If you regard v as a function of x, then

dv _ 1dv: (2.86)
dx 2dx

Use this to rewrite Newton’s second law in the separated form m d(v?) = 2F (x)dx and then
integrate from x, to x.] Comment on your result for the case that F(x) is actually a constant. (You
may recognise your solution as a statement about kinetic energy and work, both of which we shall be
discussing in Chapter 4.) ‘

2.13 *»* Consider a mass m constrained to move on the x axis and subject to a net force F' = —kx where
k is a positive constant. The mass is released from rest at x = x,, at time ¢ = 0. Use the result (2.85)
in Problem 2.12 to find the mass’s speed as a function of x; that is, dx/dt = g(x) for some function
g(x). Separate this as dx/g(x) = dt and integrate from time O to ¢ to find x as a function of ¢. (You
may recognize this as one way — not the easiest — to solve the simple harmonic oscillator.)

2.14 *** Use the method of Problem 2.7 to solve the following: A mass m is constrained to move along
the x axis subject to a force F (v) = —Foe”/ V. where F, and V are constants. (a) Find v(¢) if the initial



Problems for Chapter 2 75

velocity is v, > O attime ¢ = 0. (b) At what time does it come instantaneously to rest? (¢) By integrating
v(t), you can find x(¢). Do this and find how far the mass travels before coming instantaneously to rest.

SECTION 2.3 Trajectory and Range in a Linear Medium

2.15 * Consider a projectile launched with velocity (v, v,) from horizontal ground (with x measured
horizontally and y vertically up). Assuming no air resistance, find how long the projectile is in the air
and show that the distance it travels before landing (the horizontal range) is 2v,,v,,/8-

2.16 * A golfer hits his ball with speed v, at an angle 6 above the horizontal ground. Assuming that
the angle @ is fixed and that air resistance can be neglected, what is the minimum speed v,(min) for
which the ball will clear a wall of height &, a distance d away? Your solution should get into trouble if
the angle 6 is such that tan§ < h/d. Explain. What is v, (min) if = 25°,d =50 m, and » = 2 m?

2.17 » The two equations (2.36) give a projectile’s position (x, y) as a function of ¢. Eliminate ¢ to
give y as a function of x. Verify Equation (2.37).

2.18 * Taylor’s theorem states that, for any reasonable function f (x), the value of f at a point (x + 3)
can be expressed as an infinite series involving f and its derivatives at the point x:

f+d=fx)+ f 8+ %f”(xwz + %f’”(x)é3 +-- (2.87)

where the primes denote successive derivatives of f(x). (Depending on the function this series may
converge for any increment 8 or only for values of § less than some nonzero “radius of convergence.”)
This theorem is enormously useful, especially for small values of §, when the first one or two terms of
the series are often an excellent approximation.“ (a) Find the Taylor series for In(1 4 6). (b) Do the
same for cos 8. (¢) Likewise sin 8. (d) And €°.

2.19 » Consider the projectile of Section 2.3. (a) Assuming there is no air resistance, write down the
position (x, y) as a function of 7, and eliminate ¢ to give the trajectory y as a function of x. (b) The
correct trajectory, including a linear drag force, is given by (2.37). Show that this reduces to your
answer for part (a) when air resistance is switched off (r and v, = g7 both approach infinity). [Hinz:
Remember the Taylor series (2.40) for In(1 — €).]

2.20 »* [Computer] Use suitable graph-plotting software to plot graphs of the trajectory (2.36) of a
projectile thrown at 45°above the horizontal and subject to linear air resistance for four different values
of the drag coefficient, ranging from a significant amount of drag down to no drag at all. Put all four
trajectories on the same plot. [Hint: In the absence of any given numbers, you may as well choose
convenient values. For example, why not take v, = vy, = 1and g = 1. (This amounts to choosing your
units of length and time so that these parameters have the value 1.) With these choices, the strength
of the drag is given by the one parameter v, = 7, and you might choose to plot the trajectories for
vier = 0.3, 1, 3, and oo (that is, no drag at all), and for times from ¢ = 0 to 3. For the case that v, = 00,
you’ll probably want to write out the trajectory separately.]

2.21 *»xx A gun can fire shells in any direction with the same speed v,. Ignoring air resistance and
using cylindrical polar coordinates with the gun at the origin and z measured vertically up, show that

"1 For more details on Taylor’s series see, for example, Mary Boas, Mathematical Methods in the Physical Sci-
ences (Wiley, 1983), p. 22 or Donald McQuarrie, Mathematical Methods for Scientists and Engineers (University
Science Books, 2003), p. 94.
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the gun can hit any object inside the surface

Describe this surface and comment on its dimensions.

2.22 »x* [Computer] The equation (2.39) for the range of a projectile in a linear medium cannot be
solved analytically in terms of elementary functions. If you put in numbers for the several parameters,
then it can be solved numerically using any of several software packages such as Mathematica, Maple,
and MatLab. To practice this, do the following: Consider a projectile launched at angle 8 above the
horizontal ground with initial speed v, in a linear medium. Choose units such that v, =1and g = 1.
Suppose also that the terminal speed v, = 1. (With v, = v, air resistance should be fairly important.)
We know that in a vacuum, the maximum range occurs at 6 = /4 =~ 0.75. (a) What is the maximum
range in a vacuum? (b) Now solve (2.39) for the range in the given medium at the same angle § = 0.75.
(¢) Once you have your calculation working, repeat it for some selection of values of § within which
the maximum range probably lies. (You could try 8 = 0.4, 0.5, -- -, 0.8.) (d) Based on these results,
choose a smaller interval for # where you’re sure the maximum lies and repeat the process. Repeat it
again if necessary until you know the maximum range and the corresponding angle to two significant
figures. Compare with the vacuum values.

SECTION 2.4 Quadratic Air Resistance

2.23 x Find the terminal speeds in air of (a) a steel ball bearing of diameter 3 mm, (b) a 16-pound steel
shot, and (c) a 200-pound parachutist in free fall in the fetal position. In all three cases, you can safely
assume the drag force is purely quadratic. The density of steel is about 8 g/cm?® and you can treat the
parachutist as a sphere of density 1 g/cm’.

2.24  Consider a sphere (diameter D, density o) falling through air (density @,;;) and assume that
the drag force is purely quadratic. (a) Use Equation (2.84) from Problem 2.4 (with x = 1/4 for a sphere)
to show that the terminal speed is

8 . Osn
Vier = —Dg&

. (2.88)
3 Qair
(b) Use this result to show that of two spheres of the same size, the denser one will eventually fall

faster. (c¢) For two spheres of the same material, show that the larger will eventually fall faster.

2.25 = Consider the cyclist of Section 2.4, coasting to a halt under the influence of a quadratic drag
force. Derive in detail the results (2.49) and (2.51) for her velocity and position, and verify that the
constant T = m/cv, is indeed a time.

2.26 * A typical value for the coefficient of quadratic air resistance on a cyclist is around ¢ = 0.20
N/(m/s)?. Assuming that the total mass (cyclist plus cycle) is m = 80 kg and that at # = 0 the cyclist
has an initial speed v, = 20 m/s (about 45 mi/h) and starts to coast to a stop under the influence of air
resistance, find the characteristic time t = m/cv,. How long will it take him to slow to 15 m/s? What
about 10 m/s? And 5 m/s? (Below about 5 m/s, it is certainly not reasonable to ignore friction, so there
is no point pursuing this calculation to lower speeds.)
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2.27 » 1 kick a puck of mass m up an incline (angle of slope = 8) with initial speed v,. There is no
friction between the puck and the incline, but there is air resistance with magnitude f(v) = cv?. Write
down and solve Newton’s second law for the puck’s velocity as a function of ¢ on the upward journey.
How long does the upward journey last?

2.28 * A mass m has speed v, at the origin and coasts along the x axis in a medium where the drag
force is F(v) = —cv/2. Use the “v dv/dx rule” (2.86) in Problem 2.12 to write the equation of motion
in the separated form m v dv/F (v) = dx, and then integrate both sides to give x in terms of v (or vice
versa). Show that it will eventually travel a distance 2m,/v,/c.

2.29 » The terminal speed of a 70-kg skydiver in spread-eagle position is around 50 m/s (about 115
mi/h). Find his speed at times ¢ = 1, 5, 10, 20, 30 seconds after he jumps from a stationary balloon.
Compare with the corresponding speeds if there were no air resistance.

2.30 * Suppose we wish to approximate the skydiver of Problem 2.29 as a sphere (not a very promising
approximation, but nevertheless the kind of approximation physicists sometimes like to make). Given
the mass and terminal speed, what should we use for the diameter of the sphere? Does your answer
seem reasonable?

2.31 »x A basketball has mass m = 600 g and diameter D = 24 cm. (a) What is its terminal speed?
(b) If it is dropped from a 30-m tower, how long does it take to hit the ground and how fast is it going
when it does so? Compare with the corresponding numbers in a vacuum.

2.32 »x Consider the following statement: If at all times during a projectile’s flight its speed is much
less than the terminal speed, the effects of air resistance are usually very small. (a) Without reference
to the explicit equations for the magnitude of v, explain clearly why this is so. (b) By examining the
explicit formulas (2.26) and (2.53) explain why the statement above is even more useful for the case
of quadratic drag than for the linear case. [Hint: Express the ratio f/mg of the drag to the weight in
terms of the ratio v/vi.]

2.33 »» The hyperbolic functions cosh z and sinh z are defined as follows:

et + e . et —e ¢
coshz = ——2— and sinhz= ——

for any z, real or complex. (a) Sketch the behavior of both functions over a suitable range of real
values of z. (b) Show that cosh z = cos(iz). What is the corresponding relation for sinh z? (¢) What are
the derivatives of cosh z and sinh z? What about their integrals? (d) Show that cosh?® z — sinh?z = 1.
(e) Show that f dx/~/1+ x? = arcsinh x. [Hint: One way to do this is to make the substitution
x = sinhz.]

2.34 »x The hyperbolic function tanh z is defined as tanh z = sinh z/ cosh z, with cosh z and sinh z
defined as in Problem 2.33. (a) Prove that tanh z = —i tan(iz). (b) What is the derivative of tanh z?
(c) Show that [ dztanhz = Incosh z. (d) Prove that 1 — tanh? z = sech®z, where sechz = 1/ cosh z.
(e) Show that [ dx/(1 — x?) = arctanh x.

2.35 »* (a) Fill in the details of the arguments leading from the equation of motion (2.52) to Equations
(2.57) and (2.58) for the velocity and position of a dropped object subject to quadratic air resistance.
Be sure to do the two integrals involved. (The results of Problem 2.34 will help.) (b) Tidy the two
equations by introducing the parameter T = v,,/g. Show that when 7 = 7, v has reached 76% of its
terminal value. What are the corresponding percentages when ¢ = 2t and 37? (¢) Show that when
t > 1, the position is approximately y ~ vt + const. [Hint: The definition of cosh x (Problem 2.33)



78 Chapter 2 Projectiles and Charged Particles

gives you a simple approximation when x is large.] (d) Show that for r small, Equation (2.58) for the
position gives y ~ 1 gt2. [Use the Taylor series for cosh x and for In(1 + §).]

2.36 »x Consider the following quote from Galileo’s Dialogues Concerning Two New Sciences:

Aristotle says that “an iron ball of 100 pounds falling from a height of one hundred cubits reaches the
ground before a one-pound ball has fallen a single cubit.” I say that they arrive at the same time. You
find, on making the experiment, that the larger outstrips the smaller by two finger-breadths, that is, when
the larger has reached the ground, the other is short of it by two finger-breadths.

We know that the statement attributed to Aristotle is totally wrong, but just how close is Galileo’s claim
that the difference is just “two finger breadths”? (a) Given that the density of iron is about 8 g/cm?, find
the terminal speeds of the two iron balls. (b) Given that a cubit is about 2 feet, use Equation (2.58) to
find the time for the heavier ball to land and then the position of the lighter ball at that time. How far
apart are they?

2.37 »* The result (2.57) for the velocity of a falling object was found by integrating Equation (2.55)
and the quickest way to do this is to use the integral [ du/(1 — u?) = arctanh u. Here is another way
to do it: Integrate (2.55) using the method of “partial fractions,” writing

1 _1( 1 N 1)
1—u2 2\1+u 1-u/)’

which lets you do the integral in terms of natural logs. Solve the resulting equation to give v as a
function of ¢ and show that your answer agrees with (2.57).

2.38 »x A projectile that is subject to quadratic air resistance is thrown vertically up with initial
speed v,. (a) Write down the equation of motion for the upward motion and solve it to give v as a
function of ¢. (b) Show that the time to reach the top of the trajectory is

liop = (Vier/ 8) arctan (v, / vier) -

(c) For the baseball of Example 2.5 (with v, = 35 m/s), find Ttop for the cases that v, = 1, 10, 20, 30,
and 40 m/s, and compare with the corresponding values in a vacuum.

2.39 »* When a cyclist coasts to a stop, he is actually subject to two forces, the quadratic force of air
resistance, f = —cv? (with ¢ as given in Problem 2.26), and a constant frictional force f;, of about 3
N. The former is dominant at high and medium speeds, the latter at low speed. (The frictional force is a
combination of ordinary friction in the bearings and rolling friction of the tires on the road.) (a) Write
down the equation of motion while the cyclist is coasting to a stop. Solve it by separating variables to
give ¢t as a function of v. (b) Using the numbers of Problem 2.26 (and the value f;, = 3 N given above)
find how long it takes the cyclist to slow from his initial 20 m/s to 15 m/s. How long to slow to 10 and
5 m/s? How long to come to a full stop? If you did Problem 2.26, compare with the answers you got
there ignoring friction entirely.

2.40 »* Consider an object that is coasting horizontally (positive x direction) subject to a drag force
f = —bv — cv?. Write down Newton’s second law for this object and solve for v by separating
variables. Sketch the behavior of v as a function of 7. Explain the time dependence for ¢ large. (Which
force term is dominant when ¢ is large?)

2.41 ** A baseball is thrown vertically up with speed v, and is subject to a quadratic drag with
magnitude f(v) = cv?. Write down the equation of motion for the upward journey (measuring y
vertically up) and show that it can be rewritten as v = —g[1 + (v/v,,)?]. Use the “vdv/dx rule”
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(2.86) to write v as vdv/dy, and then solve the equation of motion by separating variables (put all
terms involving v on one side and all terms involving y on the other). Integrate both sides to give y in
terms of v, and hence v as a function of y. Show that the baseball’s maximum height is

v2 v2 4+ v?
VYmax = 2t—;r In ——————‘ervz ° . (2.89)

ter
If v, = 20 m/s (about 45 mph) and the baseball has the parameters given in Example 2.5 (page 61),
what is Y., ? Compare with the value in a vacuum.

2.42 ** Consider again the baseball of Problem 2.41 and write down the equation of motion for the
downward journey. (Notice that with a quadratic drag the downward equation is different from the
upward one, and has to be treated separately.) Find v as a function of y and, given that the downward
journey starts at Y., as given in (2.89), show that the speed when the ball returns to the ground is

VerVo/r/ Vi, + v2. Discuss this result for the cases of very much and very little air resistance. What
is the numerical value of this speed for the baseball of Problem 2.41? Compare with the value in a
vacuum.

2.43 »x* [Computer] The basketball of Problem 2.31 is thrown from a height of 2 m with initial velocity
v, = 15 m/s at 45° above the horizontal. (a) Use appropriate software to solve the equations of motion
(2.61) for the ball’s position (x, y) and plot the trajectory. Show the corresponding trajectory in the
absence of air resistance. (b) Use your plot to find how far the ball travels in the horizontal direction
before it hits the floor. Compare with the corresponding range in a vacuum.

2.44 »*x [Computer] To get an accurate trajectory for a projectile one must often take account of several
complications. For example, if a projectile goes very high then we have to allow for the reduction
in air resistance as atmospheric density decreases. To illustrate this, consider an iron cannonball
(diameter 15 cm, density 7.8 g/cm?) that is fired with initial velocity 300 m/s at 50 degrees above
the horizontal. The drag force is approximately quadratic, but since the drag is proportional to the
atmospheric density and the density falls off exponentially with height, the drag force is f = c(y)v?
where c(y) = y D? exp(—y/A) with y given by (2.6) and A &~ 10, 000 m. (a) Write down the equations
of motion for the cannonball and use appropriate software to solve numerically for x(¢) and y(¢) for
0 <t < 3.5s.Plotthe ball’s trajectory and find its horizontal range. (b) Do the same calculation ignoring
the variation of atmospheric density [that is, setting c(y) = ¢(0)], and yet again ignoring air resistance
entirely. Plot all three trajectories for 0 < ¢ < 3.5 s on the same graph. You will find that in this case
air resistance makes a huge difference and that the variation of air resistance makes a small, but not
negligible, difference.

SECTION 2.6 Complex Exponentials

2.45 x (a) Using Euler’s relation (2.76), prove that any complex number z = x + iy can be written in
the form z = re’%, where r and 6 are real. Describe the significance of r and 6 with reference to the
complex plane. (b) Write z = 3 + 4i in the form z = re'?. (¢) Write z = 2¢~"/3 in the form x + iy.

2.46 * For any complex number z = x + iy, the real and imaginary parts are defined as the real
numbers Re(z) = x and Im(z) = y. The modulus or absolute value is |z| = v/x2 + y2 and the phase
or angle is the value of & when z is expressed as z = re'®. The complex conjugate is z* = x — iy.
(This last is the notation used by most physicists; most mathematicians use z.) For each of the following
complex numbers, find the real and imaginary parts, the modulus and phase, and the complex conjugate,
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and sketch z and z* in the complex plane:

@z=1+i b)z=1—i/3
(©)z =274 (d)z = 5ei!.

In part (d), w is a constant and ¢ is the time.

2.47 > For each of the following two pairs of numbers compute z + w, z — w, zw, and z/w.
(a)z=6+8 and w=3—4i (b)z=28¢" and w= 4¢i7/6,

Notice that for adding and subtracting complex numbers, the form x + iy is more convenient, but for
multiplying and especially dividing, the form re'® is more convenient. In part (a), a clever trick for
finding z/w without converting to the form re' is to multiply top and bottom by w*; try this one both

ways.

2.48 x Prove that [z| = +/z*z for any complex number z.

2.49 x Consider the complex number z = ¢’ = cos 6 + i sin 6. (a) By evaluating z* two different ways,

prove the trig identities cos 26 = cos®> — sin @ and sin 26 = 2 sin @ cos 6. (b) Use the same technique
to find corresponding identities for cos 36 and sin 36.

2.50 » Use the series definition (2.72) of e to prove that!? de?/dz = €°.

2.51 »x Use the series definition (2.72) of e to prove that e?e® = ¢*t. [Hint: If you write down the
left side as a product of two series, you will have a huge sum of terms like z"w™. If you group together
all the terms for which n + m is the same (call it p) and use the binomial theorem, you will find you
have the series for the right side.] '

SECTION 2.7 Solution for the Charge in a B Field

2.52 » The transverse velocity of the particle in Sections 2.5 and 2.7 is contained in (2.77), since -
1 = v, + iv,. By taking the real and imaginary parts, find expressions for v, and v, separately. Based
on these expressions describe the time dependence of the transverse velocity.

2.53 » A charged particle of mass m and positive charge ¢ moves in uniform electric and magnetic
fields, E and B, both pointing in the z direction. The net force on the particle is F = g(E + v x B).
Write down the equation of motion for the particle and resolve it into its three components. Solve the
equations and describe the particle’s motion.

2.54 »* In Section 2.5 we solved the equations of motion (2.68) for the transverse velocity of a charge
in a magnetic field by the trick of using the complex number 1 = v, + iv,. As you might imagine,
the equations can certainly be solved without this trick. Here is one way: (a) Differentiate the first of
equations (2.68) with respect to ¢ and use the second to give you a second-order differential equation
for v,. This is an equation you should recognize [if not, look at Equation (1.55)] and you can write
down its general solution. Once you know v,, (2.68) tells you v,. (b) Show that the general solution
you get here is the same as the general solution contained in (2.77), as disentangled in Problem 2.52.

121f you are the type who worries about mathematical niceties, you may be wondering if it is permissible
to differentiate an infinite series. Fortunately, in the case of a power series (such as this), there is a theorem
that guarantees the series can be differentiated for any z inside the “radius of convergence.” Since the radius of
convergence of the series for ¢° is infinite, we can differentiate it for any value of z.
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2.55 x*xx A charged particle of mass m and positive charge g moves in uniform electric and magnetic
fields, E pointing in the y direction and B in the z direction (an arrangement called “crossed E and B
fields”). Suppose the particle is initially at the origin and is given a kick at time r = 0 along the x axis
with v, = vy, (positive or negative). (a) Write down the equation of motion for the particle and resolve
it into its three components. Show that the motion remains in the plane z = 0. (b) Prove that there is
a unique value of v,,, called the drift speed vy, for which the particle moves undeflected through the
fields. (This is the basis of velocity selectors, which select particles traveling at one chosen speed from
a beam with many different speeds.) (c) Solve the equations of motion to give the particle’s velocity
as a function of #, for arbitrary values of v,,. [Hinz: The equations for (v,, v,) should look very like
Equations (2.68) except for an offset of v, by a constant. If you make a change of variables of the
form u, = v, — vgr and u, = v,, the equations for (u,, u,) will have exactly the form (2.68), whose
general solution you know.] (d) Integrate the velocity to find the position as a function of # and sketch
the trajectory for various values of v,






CHAPTER

Momentum and
Angular Momentum

In this and the next chapter I shall describe the great conservation laws of momentum,
angular momentum, and energy. These three laws are closely related to one another
and are perhaps the most important of the small number of conservation laws that are
regarded as cornerstones of all modern physics. Curiously, in classical mechanics the
first two laws (momentum and angular momentum) are very different from the last
(energy). Itis arelatively easy matter to prove the first two from Newton’s laws (indeed
we already have proved conservation of momentum), whereas the proof of energy
conservation is surprisingly subtle. I discuss momentum and angular momentum in
this rather short chapter and energy in Chapter 4, which is appreciably longer.

3.1 Conservation of Momentum

In Chapter 1 we examined a system of N particles labeled « = 1, - - -, N. We found
that as long as all the internal forces obey Newton’s third law, the rate of change of the
system’s total linear momentum P = p,; + --- + py = X_ p, is determined entirely
by the external forces on the system:

P = F¢ (3.1)

where F™! denotes the total external force on the system. Because of the third law, the
internal forces all cancel out of the rate of change of the fotal momentum. In particular,
if the system is isolated, so that the total external force is zero, we have the
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If our system contains just one particle (N = 1), then all forces on the particle are
external, and the conservation of momentum is reduced to the not very interesting
statement that, in the absence of any forces, the momentum of a single particle
is constant, which is just Newton’s first law. However, if our system has two or
more particles (N > 2), then momentum conservation is a nontrivial and often useful
property, as the following simple and well-known example will remind you.

S e R e R S R R

ST S SRR e R e

EXAMPLE 3.1 An Inelastic Collision of Two Bodies

Two bodies (two lumps of putty, for example, or two cars at an intersection)
have masses m; and m, and velocities v, and v,. The two bodies collide and lock
together, so they move off as a single unit, as shown in Figure 3.1. (A collision
in which the bodies lock together like this is said to be perfectly inelastic.)
Assuming that any external forces are negligible during the brief moment of
collision, find the velocity v just after the collision.

The initial total momentum, just before the collision, is

Py =mvy + myvy,
and the final momentum, just after the collision, is
Pﬁn = myv =+ myV = (ml + mz)v.

(Notice that this last equation illustrates the useful result that, once two bodies
have locked together, we can find their momentum by considering them as
a single body of mass m; + m,.) By conservation of momentum these two
momenta must be equal, Ps, = P;,, and we can easily solve to give the final
velocity,

__ My t+myvy

y= MVt movy (3.2)
my + ny

We see that the final velocity is just the weighted average of the original veloc-
ities v, and v,, weighted by the corresponding masses m and m,.

Figure 3.1 A perfectly inelastic collision between
two lumps of putty.
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An important special case is when one of the bodies is initially at rest, as
when a speeding car rams a stationary car at a stop light. With v, = 0, Equation
(3.2) reduces to

3!

ve—1 v, (3.3)

my +m;

In this case the final velocity is always in the same direction as v, but is reduced
by the factor m/(m + m,). The result (3.3) is used by police investigating car
crashes, since it lets them find the unknown velocity v; of a speeder who has
rear-ended a stationary car, in terms of quantities that can be measured after the
event. (The final velocity v can be found from the skid marks of the combined
wreck.)

This sort of analysis of collisions, using conservation of momentum, is
an important tool in solving many problems ranging from nuclear reactions,

through car crashes, to collisions of galaxies.

i

3.2 Rockets

A beautiful example of the use of momentum conservation is the analysis of rocket
propulsion. The basic problem that is solved by the rocket is this: With no external
agent to push on or be pushed by, how does an object get itself moving? You can
put yourself in the same difficulty by imagining yourself stranded on a perfectly
frictionless frozen lake. The simplest way to get yourself to shore is to take off anything
that is dispensible, such as a boot, and throw it as hard as possible away from the shore.
By Newton’s third law, when you push one way on the boot, the boot pushes in the
opposite direction on you. Thus as you throw the boot, the reaction force of the boot
on you will cause you to recoil in the opposite direction and then glide across the ice
to shore. A rocket does essentially the same thing. Its motor is designed to hurl the
spent fuel out of the back of the rocket, and by the third law, the fuel pushes the rocket
forward.

To analyse a rocket’s motion quantitatively we must examine the total momentum.
Consider the rocket shown in Figure 3.2 with mass m, traveling in the positive x
direction (so I can abbreviate v, as just v) and ejecting spent fuel at the exhaust speed
Ve relative to the rocket. Since the rocket is ejecting mass, the rocket’s mass m is
steadily decreasing. At time 7, the momentum is P(z) = mv. A short time later at!
t 4 dt, the rocket’s mass is (m + dm), where dm is negative, and its momentum is
(m + dm)(v + dv). The fuel ejected in the time df has mass (—dm) and velocity

'Concerning the use of the small quantities like d¢ and dm, I recommend again the view that
they are small but nonzero increments, with dr chosen sufficiently small that dm divided by dr is
(within whatever we have chosen as our desired accuracy) equal to the derivative dm /d¢. For more
details, see the footnote immediately before Equation (2.47).
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Figure 3.2 A rocket of mass m travels to the right with
speed v and ejects spent fuel with exhaust speed v,, rela-
tive to the rocket.

v — v, relative to the ground. Thus the total momentum (rocket plus the fuel just
ejected) at t 4 dt is

P(t+dt)y=m+dm)(v+ dv) —dm — vy) = mv + mdv + dm vy

where I have neglected the doubly small product dm dv. Therefore, the change in total
momentum is

dP =Pt +dt) — P(t) =mdv +dmuv,. (3.4)

If there is a net external force F*' (gravity, for instance), this change of momentum
is Fetdt. (See Problem 3.11.) Here I shall assume that there are no external forces,
so that P is constant and d P = 0. Therefore

mdv = —dm vg,. (3.5)
Dividing both sides by d¢, we can rewrite this as
MV = —MUgy (3.6)

where —m is the rate at which the rocket’s engine is ejecting mass. This equation
looks just like Newton’s second law (mv = F) for an ordinary particle, except that
the product —mv,, on the right plays the role of the force. For this reason this product
is often called the thrust:

thrust = —muvg,. (3.7)

(Since m is negative, this defines the thrust to be positive.)

Equation (3.5) can be solved by separation of variables. Dividing both sides by m
gives
dm

dv = —Vgy—
If the exhaust speed v,, is constant, this equation can be integrated to give

V — Uy = Ve, In(my/m) (3.8)

where v, is the initial velocity and m,, is the initial mass of the rocket (including fuel
and payload). This result puts a significant restriction on the maximum speed of the
rocket. The ratio m/m is largest when all the fuel is burned and m is just the mass
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of rocket plus payload. Even if, for example, the original mass is 90% fuel, this ratio
is only 10, and, since In 10 = 2.3, this says that the speed gained, v — v,, cannot be
more than 2.3 times v,,. This means that rocket engineers try to make v, as big as
possible and also design multistage rockets, which can jettison the heavy fuel tanks
of the early stages to reduce the total mass for later stages.”

3.3 The Center of Mass

Several of the ideas of Section 3.1 can be rephrased in terms of the important notion of
a system’s center of mass. Let us consider a group of N particles,« =1, ---, N, with
masses m,, and positions r, measured relative to an origin O. The center of mass (or
CM) of this system is defined to be the position (relative to the same origin O)

1 mr;+---+ myr
R=—> "mr,=—1 - NN (3.9)

where M denotes the total mass of all of the particles, M = > m,,. The first thing to
note about this definition is that it is a vector equation. The CM position is a vector R
with three components (X, Y, Z), and Equation (3.9) is equivalent to three equations
giving these three components,

| & | & 1
X=— My Xy, Y =— My Yy Z=— MyZy.
M;aa M; @y M;M

Either way, the CM position R is a weighted average of the positions ry, - - -, Iy, in
which each position r, is weighted by the corresponding mass m,,. (Equivalently, it
is the sum of the r,, each multiplied by the fraction of the total mass atr,.)

To get a feeling for the CM, it may help to consider the case of just two particles
(N = 2). In this case, the definition (3.9) reads

_ myry+ mor,
my + my

R (3.10)

It is easy to verify that the CM position has several familiar properties. For example,
you can show (Problem 3.18) that the CM defined by (3.10) lies on the line joining
the two particles, as shown in Figure 3.3. It is also easy to show that the distances of
the CM from m and m, are in the ratio m,/m, so that the CM lies closer to the more
massive particle. (In Figure 3.3 this ratio is 1/3.) In particular, if m is much greater
than m,, the CM will be very close to r;. More generally, going back to Equation
(3.9) for the CM of N particles, we see that if m; is much greater than any of the
other masses (as is the case for the sun as compared to all the planets), then m; ~ M
while m, <« M for all other particles; this means that R is very close to r;. Thus, for
example, the CM of the solar system is very close to the sun.

2] ettisoning the fuel tanks of stage 1 reduces the inital and final masses of stage 2 by the same
amount. This increases the ratio m,/m when we apply (3.8) to stage 2. See Problem 3.12.
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0

Figure 3.3 The CM of two particles lies at the position
R = (m;r; + myr,)/M. You can prove that this lies on
the line joining m, to m,, as shown, and that the distances
of the CM from m, and m, are in the ratio m,/m;.

We can now write the total momentum P of any N-particle system in terms of the
system’s CM as follows:

P=) p,=) m,=MR (3.11)
o o

where the last equality is just the derivative of the definition (3.9) of R (multiplied by
M). This remarkable result says that the total momentum of the N particles is exactly
the same as that of a single particle of mass M and velocity equal to that of the CM.

We get an even more striking result when we differentiate (3.11). According to
(3.1), the derivative of P is just Fe*'. Therefore, (3.11) implies that

F = MR. (3.12)

That is, the center of mass R moves exactly as if it were a single particle of mass M,
subject to the net external force on the system. This result is the main reason why we
can often treat extended bodies, such as baseballs and planets, as if they were point
particles. Provided a body is small compared to the scale of its trajectory, its CM
position R is a good representative of its overall location, and (3.12) implies that R
moves just like a point particle.

Given the importance of the CM, you need to feel comfortable calculating the CM
position for various systems. You may have had plenty of practice in introductory
physics or in a calculus course, but, in case you didn’t, there are several exercises at
the end of this chapter. One important point to bear in mind is that when the mass
in a body is distributed continuously, the sum in the definition (3.9) goes over to an
integral

1 1
R=— [ rdm=— rdv 3.13
M/ " M./Q G139

where o is the mass density of the body, dV denotes an element of volume, and the
integral runs over the whole body (that is, everywhere ¢ # 0). We shall be using similar
integrals to evaluate the moment of inertia tensor in Chapter 10. Meanwhile, here is
one example:
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EXAMPLE 3.2 The CM of a Solid Cone

Find the CM position for the uniform solid cone shown in Figure 3.4.

It is perhaps obvious by symmetry that the CM lies on the axis of symmetry
(the z axis), but this also follows immediately from the integral (3.13). For
example, if you consider the x component of that integral, it is easy to see that
the contribution from any point (x, y, z) is exactly cancelled by that from the
point (—x, y, z). That is, the integral for X is zero. Because the same argument
applies to Y, the CM lies on the z axis. To find the height Z of the CM, we must
evaluate the integral

1
Z:—fgdezgfzdxdydz
M M

where I could take the factor o outside the integral since g is constant throughout
the cone (as long as we understand the integral is limited to the inside of the cone)
and I have changed the volume element dV to dx dy dz. For any given z, the
integral over x and y runs over a circle of radius » = Rz/ h, giving a factor of
wr? = 7 R*z%/ h?, so that

2 rh 214
Z:QnR f z3dz:QﬂR h——3h
0

Mh? Mh2 4 4

where in the last step I replaced the mass M by o times the volume or M =
107 R*h. We conclude that the CM is on the axis of the cone at a distance 2h
from the vertex (or %h from the base).

X

Figure 3.4 A solid cone, centered on the z axis, with
vertex at the origin and uniform mass density g. Its height
is h and its base has radius R.
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3.4 Angular Momentum for a Single Particle

In many ways the conservation of angular momentum parallels the conservation of
ordinary (or “linear”’) momentum. Nevertheless, I would like to review the formalism
in detail, first for a single particle and then for a multiparticle system. This will
introduce several important ideas and some useful mathematics.

The angular momentum £ of a single particle is defined as the vector

£=r xp. 3.14)

Here r x p is the vector product of the particle’s position vector r, relative to the
chosen origin O, and its momentum p, as shown in Figure 3.5. Notice that because
r depends on the choice of origin, the same is true of €: The angular momentum
£ (unlike the linear momentum p) depends on the choice of origin, and we should,
strictly speaking, refer to £ as the angular momentum relative to O.

The time rate of change of £ is easily found:

é:%(rxp):(fxp)ﬂrxp). (3.15)

(You can easily check that the product rule can be used for differentiating vector
products, as long as you are careful to keep the vectors in the right order. See
Problem 1.17.) In the first term on the right, we can replace p by mr, and, because the
cross product of any two parallel vectors is zero, the first term is zero. In the second
term, we can replace p by the net force F on the particle, and we get

{=rxF=T. (3.16)

Here I' (Greek capital gamma) denotes the net torque about O on the particle, defined
as r x F. (Other popular symbols for torque are T and N.) In words, (3.16) says that
the rate of change of a particle’s angular momentum about the origin O is equal to the
net applied torque about O. Equation (3.16) is the rotational analog of the equation
p = F for the linear momentum, and (3.16) is often described as the rotational form
of Newton’s second law.

Figure 3.5 For any particle with position r relative to the origin
O and momentum p, the angular momentum about O is defined
as the vector £ =r x p. For the case shown, £ points into the

page.
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o Planet

(Sun

Figure 3.6 A planet (mass m) is subject to the central force
of the sun (mass M). If we choose the origin at the sun, then
r x F =0, and the planet’s angular momentum about O is
constant.

In many one-particle problems one can choose the origin O so that the net torque
I' (about the chosen Q) is zero. In this case, the particle’s angular momentum about
O is constant. Consider, for example, a single planet (or comet) orbiting the sun. The
only force on the planet is the gravitational pull GmM/r? of the sun, as shown in
Figure 3.6. A crucial property of the gravitational force is that it is central, that is,
directed along the line joining the two centers. This means that F is parallel (actually,
antiparallel) to the position vector r measured from the sun, and hence thatr x F = 0.
Thus if we choose our origin at the sun, the planet’s angular momentum about O is
constant, a fact that greatly simplifies the analysis of planetary motion. For example,
because r X p is constant, r and p must remain in a fixed plane; in other words, the
planet’s orbit is confined to a single plane containing the sun, and the problem is
reduced to two dimensions, a result we shall exploit in Chapter 8.

Kepler's Second Law

One of the earliest triumphs for Newton’s mechanics was that he was able to explain
Kepler’s second law as a simple consequence of conservation of angular momentum.
Newton’s laws of motion were published in 1687 in his famous book Principia.
Nearly eighty years earlier, the German astronomer Johannes Kepler (1571-1630)
had published his three laws of planetary motion.> These laws are quite different
from Newton’s laws in that they are simply mathematical descriptions of the observed
motion of the planets. For example, the first law states that the planets move around
the sun in ellipses with the sun at one focus. Kepler’s laws make no attempt to explain
planetary motion in terms of more fundamental ideas; they are just summaries —
brilliant summaries, requiring great insight, but nonetheless just summaries — of the
observed motions of the planets. All three of Kepler’s laws turn out to be consequences
of Newton’s laws of motion. I shall derive the first and third of the Kepler laws in
Chapter 8. The second we are ready to discuss now.

3Kepler’s first two laws appeared in his book Astronomia Nova in 1609 and the third in another
book, Harmonices Mundi, published in 1619.
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Figure 3.7 The orbit of a planet with the sun fixed at O. Kepler’s
second law asserts that if the two pairs of points P, Q and P’, Q'
are separated by equal time intervals, dt = dt’, then the two areas
dA and d A’ are equal.

Kepler’s second law is generally stated something like this:

. - .
~ As each planet moves around the sun, a line drawn from the planet to the sun
~ sweeps out equal areas in equal times. - -

This rather curious statement is illustrated in Figure 3.7, which shows the path of a
planet or comet — the law applies to comets as well — orbiting about the sun at the
origin O. (Throughout this discussion, I shall make the approximation that the sun is
fixed; we shall see how to allow for the very small motion of the sun in Chapter 8.)
The area “swept out” by the planet moving between any two points P and Q is just
the area of the triangle O P Q. (Strictly speaking the “triangle” is the area between the
two lines O P and O Q and the arc P Q. However, it is sufficient to consider pairs of
points P and Q that are close together, in which case the difference between the arc
P Q and the straight line P Q is negligible.) I shall denote the time elapsed between the
planet’s visiting P and Q by dt and the corresponding area of O P Q by d A. Kepler’s
second law asserts that if we choose any other pair of points P’ and Q' separated by
the same time interval (dt’ = dt), then the area O P’Q’ will be the same as O P Q, or
dA’ = dA. Equivalently we can divide both sides of this equality by d¢ and assert that
the rate at which the planet sweeps out area, d A /dt, is the same at all points on the
orbit; that is, d A /dt is constant.

To prove this result, we note first that the line O P is just the position vector r,
and P Q is the displacement dr = v dt. Now, it is a well-known property of the vector
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product that if two sides of a triangle are given by vectors a and b, then the area of
the triangle is 1|a x b|. (See Problem 3.24.) Thus the area of the triangle O P Q is

dA = %|r X vdt|.
Replacing v by p/m and dividing both sides by dt, we find that

dA 1 1
o= 2m|r X pl = 2m£ (3.17)
where £ denotes the magnitude of the angular momentum £ = r x p. Since the planet’s
angular momentum about the sun is conserved, this establishes that d A /dt is constant,
which, as we have seen, is the content of Kepler’s second law.
An alternative proof of the same result adds some additional insight: It is a
straightforward exercise to show that (Problem 3.27)

L =mr’w (3.18)

where w = ¢ is the planet’s angular velocity around the sun. And it is an equally
simple geometrical exercise to show that the rate of sweeping out area is

dA/dt = 3rte. (3.19)

Comparison of (3.18) and (3.19) shows that £ is constant if and only if dA/dt is
constant. That is, conservation of angular momentum is exactly equivalent to Kepler’s
second law. In addition, we see that as the planet (or comet) approaches closer to
the sun (r decreasing) its angular velocity w necessarily increases. Specifically, w is
inversely proportional to r2; for example, if the value of r at point P’ is half that at P,
then the angular velocity w at P’ is four times that at P.

It is interesting to note that our proof of Kepler’s second law depended only on
the fact that the gravitational force is central and hence that the planet’s angular
momentum about the sun is constant. Thus Kepler’s second law is true for an object
that moves under the influence of any central force. By contrast, we shall see in
Chapter 8 that the first and third laws (in particular the first, which says that the orbits
are ellipses with the sun at one focus) depend on the inverse-square nature of the
gravitational force and are not true for other force laws.

3.5 Angular Momentum for Several Particles

Let us next discuss a system of N particles, « = 1,2, ---, N, each with its angular
momentum £, = r, x p, (with all of the r, measured from the same origin O, of
course). We define the total angular momentum L as

N N
L=) =) r, xp, (3.20)
a=1 a=1
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Differentiating with respect to ¢ and using the result (3.16), we find that
L=>) ¢=>r,xF, (3.21)
o 24

where, as usual, F, denotes the net force on particle «. This result shows that the rate
of change of L is just the net torque on the whole system, an important result in its own
right. However, my interest now is to separate the effects of the internal and external
forces. As in Equation (1.25) we write F,, as

(net force on particle «) = F, = Z Fop + FZ’“ (3.22)
pta

where, as before, F 4 denotes the force exerted on particle a by particle 8, and FX
is the net force exerted on particle o by all agents outside our N-particle system.
Substituting into (3.21), we find that

L=) Y r,xFe + ) r, xF" (3.23)

o BFa o

Equation (3.23) corresponds to Equation (1.27) in our discussion of linear momen-
tum back in Chapter 1, and we can rework it in much the same way as there, with one
interesting additional twist. We can regroup the terms of the double sum, pairing each
term a8 with the corresponding term Ba, to give®

DD ry xFog=> " (r, x Fog + 15 x Fgy). (3.24)

a fB#a a B>a

If we assume that all the internal forces obey the third law (F,z = —Fp,), then we can
rewrite the sum on the right as

D0 @y —1p) x Fop. (3.25)

o B>«

To understand this sum, we must examine the vector (r, — rﬂ) =TI, SaYy. This is
illustrated in Figure 3.8, where we see that r is the vector pointing toward particle «
from particle 8. If, in addition to satisfying the third law, the forces F are all central,
then the two vectors r,z and F,4 point along the same line, and their cross product is
zero.

Returning to Equation (3.23), we conclude that, provided our various assumptions
are valid, the double sum in (3.23) is zero. The remaining single sum is just the net
external torque, and we conclude that

L =TI, (3.26)

In particular, if the net external torque is zero, we have the

4 Be sure you understand what has happened here. For example, I have paired the term r; x F;,
with the term ry, x F,;.
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Figure 3.8 The vector r,g = (r, — rg) points to particle o
from particle B. If the force F4 is central (points along the
line joining & and B), then r,4 and F 4 are collinear and their
cross product is zero.
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The validity of this principle depends on our two assumptions that all internal forces
F,p are central and satisfy the third law. Since these assumptions are almost always
valid, the principle (as stated) is likewise. It is of the greatest utility in solving many
problems, as I shall illustrate shortly with a couple of simple examples.

The Moment of Inertia

Before discussing an example, it is worth noting that the calculation of angular
momenta does not always require one to go back to the basic definition (3.20). As you
probably recall from your introductory physics course, for a rigid body rotating about
a fixed axis (for example, a wheel rotating on its fixed axle), the rather complicated
sum (3.20) can be expressed in terms of the moment of inertia and the angular velocity
of rotation. Specifically, if we take the axis of rotation to be the z axis, then L, the z
component of angular momentum, is just L, = I w, where [ is the moment of inertia
of the body for the given axis, and w is the angular velocity of rotation. We shall prove
and generalize this result in Chapter 10, or you can prove it yourself with the guidance
of Problem 3.30. For now, I shall ask you to carry it over from introductory physics.
In particular, as you may recall, the moments of inertia of various standard bodies
are known. For example, for a uniform disk (mass M, radius R) rotating about its
axis, I = 1M RZ2. For a uniform solid sphere rotating about a diameter, [ = %M R%. In
general, for any multiparticle system, I = ) m, paz, where p, is the distance of the
mass m,, from the axis of rotation.
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EXAMPLE 3.3 Collision of a Lump of Putty with a Turntable

SR e s e e S S e e

A uniform circular turntable (mass M, radius R, center O) is at rest in the xy
plane and is mounted on a frictionless axle, which lies along the vertical z axis.
1 throw a lump of putty (mass m) with speed v toward the edge of the turntable,
so it approaches along a line that passes within a distance’® b of O, as shown in
Figure 3.9. When the putty hits the turntable, it sticks to the edge, and the two
rotate together with angular velocity w. Find w.

This problem is easily solved using conservation of angular momentum.
Because the turntable is mounted on a frictionless axle, there is no torque on
the table in the z direction. Therefore the z component of the external torque
on the system is zero, and L, is conserved. (This is true even if we include
gravity, which acts in the z direction and contributes nothing to the torque in
the z direction.) Before the collision, the turntable has zero angular momentum,
while the putty has £ = r x p, which points in the z direction. Thus the initial
total angular momentum has z component

L™= ¢, = r(mv) sin§ = mvb.
After the collision, the putty and turntable rotate together about the z axis with
total moment of inertia® I = (m + M/2)R?, and the z component of the final
angular momentum is LE“ = I w. Therefore, conservation of angular momentum

in the form LM = Lgn tells us that

mvb = (m + M/2)R2w,

Figure 3.9 A lump of putty of mass m is thrown with velocity
v at a stationary turntable. The putty’s line of approach passes
within the distance b of the table’s center O.

3In collision theory — the theory of collisions, usually between atomic or subatomic particles —
the distance & is called the impact parameter.
6 This is m R? for the putty stuck at radius R plus iM R? for the uniform turntable.
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or, solving for w,

m vb

This answer is not especially interesting. What is interesting is that we were able
to find it with so comparatively little effort. This is typical of the conservation
laws, that they can answer many questions so simply. The kind of analysis used
here can be used in many situations (such as nuclear reactions) where an incident
projectile is absorbed by a stationary target and its angular momentum is shared
between the two bodies.

R

N S R R SR R

Angular Momentum about the CM

The conservation of angular momentum and the more general result (3.26), L = e,
were derived on the assumption that all quantities were measured in an inertial frame,
so that Newton’s second law could be invoked. This required that both L and T**" be
measured about an origin O fixed in some inertial frame. Remarkably, the same two
results also hold if L and T'*' are measured about the center of mass — even if the
CM is being accelerated and so is not fixed in an inertial frame. That is,

d
a;I(aboutChd)::F“%ﬁboutChd) (3.28)
t

and hence, if T**!(about CM) = 0, then L(about CM) is conserved. We shall prove
this result in Chapter 10, or you can prove it yourself with the guidance of Problem
3.37. I mention it now, because it allows a very simple solution to various problems,
as the following example illustrates.

R Sl R R

EXAMPLE 3.4 A Sliding and Spinning Dumbbell

A dumbbell consisting of two equal masses m mounted on the ends of a rigid
massless rod of length 2b is at rest on a frictionless horizontal table, lying on
the x axis and centered on the origin, as shown in Figure 3.10. At time ¢ = 0,
the left mass is given a sharp tap, in the shape of a horizontal force F in the y
direction, lasting for a short time At. Describe the subsequent motion.

There are actually two parts to this problem: We must find the initial motion
immediately after the impulse, and then the subsequent, force-free motion. The
initial motion is not hard to guess, but let us derive it using the tools of this
chapter. The only external force is the force F acting in the y direction for
the brief time At. Since P = F®*, the total momentum just after the impulse
is P =F Ar. Since P = MR (with M = 2m), we conclude that the CM starts
moving directly up the y axis with velocity

V., = R=F At/2m.

While the force F is acting, there is a torque I'**' = Fb about the CM, and so,
according to (3.28), the initial angular momentum (just after the impulse has

97
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Fi 2b

Figure3.10 The left mass of the dumbbell is given a sharp
tap in the y direction.

ceased) is L = Fb At. Since L = Iw, with I = 2mb?, we conclude that the
dumbbell is spinning clockwise, with initial angular velocity

w=F At/2mb.

The clockwise rotation of the dumbbell means that the left mass is moving
up relative to the CM with speed wb, and its total initial velocity is

Vieft = Uem + @b = F At/m.

By the same token the right mass is moving down relative to the CM, and its
total initial velocity is

Vright = Uem — @b = 0.

That is, the right mass is initially stationary, while the left one carries all the
momentum F At of the system.

The subsequent motion is very straightforward. Once the impulse has ceased,
there are no external forces or torques. Thus the CM continues to move straight
up the y axis with constant speed, and the dumbbell continues to rotate with
constant angular momentum about the CM and hence constant angular velocity

Gt

S ; T

Principal Definitions and Equations of Chapter 3

Equation of Motion for a Rocket
mi = —ve, + F [Egs. (3.6) & (3.29)]

The Center of Mass of Several Particles

1 mixy+ -+ myr
R=—) mr,=—" NN Eq. (3.9
> — [Eq. (3.9)]

where M is the total mass of all particles, M = > m,,.
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Angular Momentum

For a single particle with position r (relative to an origin O) and momentum p, the
angular momentum about O is

L=r xp. [Eg. (3.14)]
For several particles, the total angular momentum is
N N
L= £,=) r,xp, [Eq. (3.20)]
a=1 a=1

Provided all the internal forces are central,
L=r" [Eq. (3.26)]

where T'**! is the net external torque.

Problems for Chapter 3

Stars indicate the approximate level of difficulty, from easiest (x) to most difficult (%xx).

SECTION 3.1 Conservation of Momentum

3.1 * Consider a gun of mass M (when unloaded) that fires a shell of mass m with muzzle speed v.
(Thatis, the shell’s speed relative to the gun is v.) Assuming that the gun is completely free to recoil (no
external forces on gun or shell), use conservation of momentum to show that the shell’s speed relative
to the ground is v/(1 + m/M).

3.2 x A shell traveling with speed v, exactly horizontally and due north explodes into two equal-mass
fragments. It is observed that just after the explosion one fragment is traveling vertically up with speed
v,. What is the velocity of the other fragment?

3.3* A shell traveling with velocity v, explodes into three pieces of equal masses. Just after the
explosion, one piece has velocity v, = v, and the other two have velocities v, and v; that are equal in
magnitude (v, = v3) but mutually perpendicular. Find v, and v; and sketch the three velocities.

3.4 *x Two hobos, each of mass m,, are standing at one end of a stationary railroad flatcar with
frictionless wheels and mass mg.. Either hobo can run to the other end of the flatcar and jump off
with the same speed u (relative to the car). (a) Use conservation of momentum to find the speed of
the recoiling car if the two men run and jump simultaneously. (b) What is it if the second man starts
running only after the first has already jumped? Which procedure gives the greater speed to the car?
[Hint: The speed u is the speed of either hobo, relative to the car just after he has jumped; it has the
same value for either man and is the same in parts (2) and (b).]

3.5 »x Many applications of conservation of momentum involve conservation of energy as well, and
we haven’t yet begun our discussion of energy. Nevertheless, you know enough about energy from
your introductory physics course to handle some problems of this type. Here is one elegant example:
An elastic collision between two bodies is defined as a collision in which the total kinetic energy
of the two bodies after the collision is the same as that before. (A familiar example is the collision
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between two billiard balls, which generally lose extremely little of their total kinetic energy.) Consider
an elastic collision between two equal mass bodies, one of which is initially at rest. Let their velocities
be v; and v, = 0 before the collision, and v and v, after. Write down the vector equation representing
conservation of momentum and the scalar equation which expresses that the collision is elastic. Use
these to prove that the angle between v} and v, is 90°. This result was important in the history of atomic
and nuclear physics: That two bodies emerged from a collision traveling on perpendicular paths was
strongly suggestive that they had equal mass and had undergone an elastic collision.

SECTION 3.2 Rockets

3.6 * In the early stages of the Saturn V rocket’s launch, mass was ejected at about 15,000 kg/s, with
a speed v, ~ 2500 m/s relative to the rocket. What was the thrust on the rocket? Convert this to tons
(1 ton ~ 9000 newtons) and compare with the rocket’s initial weight (about 3000 tons).

3.7 x The first couple of minutes of the launch of a space shuttle can be described very roughly as
follows: The initial mass is 2 x 109 kg, the final mass (after 2 minutes) is about 1 x 106 kg, the average
exhaust speed v, is about 3000 m/s, and the initial velocity is, of course, zero. If all this were taking
place in outer space, with negligible gravity, what would be the shuttle’s speed at the end of this stage?
What is the thrust during the same period and how does it compare with the initial total weight of the
shuttle (on earth)?

3.8 x A rocket (initial mass m ) needs to use its engines to hover stationary, just above the ground. (a) If
it can afford to burn no more than a mass Am,, of its fuel, for how long can it hover? [Hint: Write down
the condition that the thrust just balance the force of gravity. You can integrate the resulting equation
by separating the variables ¢ and m. Take v, to be constant.] (b) If v, &~ 3000 m/s and X ~ 10%, for
how long could the rocket hover just above the earth’s surface?

3.9 x From the data in Problem 3.7 you can find the space shuttle’s initial mass and the rate of ejecting
mass —m (which you may assume is constant). What is the minimum exhaust speed v, for which the
shuttle would just begin to lift as soon as burn is fully underway? [ Hint: The thrust must at least balance
the shuttle’s weight.]

3.10 x Consider a rocket (initial mass m,) accelerating from rest in free space. At first, as it speeds up,
its momentum p increases, but as its mass m decreases p eventually begins to decrease. For what value
of m is p maximum?

3.11 »x (a) Consider a rocket traveling in a straight line subject to an external force F*' acting along
the same line. Show that the equation of motion is

mi = —rg, + F (3.29)

[Review the derivation of Equation (3.6) but keep the external force term.] (b) Specialize to the case of
a rocket taking off vertically (from rest) in a gravitational field g, so the equation of motion becomes

mv = —Muy — mg. (3.30)

Assume that the rocket ejects mass at a constant rate, m = —k (where k is a positive constant), so
that m = m, — kt. Solve equation (3.30) for v as a function of ¢, using separation of variables (that
is, rewriting the equation so that all terms involving v are on the left and all terms involving ¢ on the
right). (¢) Using the rough data from Problem 3.7, find the space shuttle’s speed two minutes into flight,
assuming (what is nearly true) that it travels vertically up during this period and that g doesn’t change
appreciably. Compare with the corresponding result if there were no gravity. (d) Describe what would
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happen to a rocket that was designed so that the first term on the right of Equation (3.30) was smaller
than the initial value of the second.

3.12 »x To illustrate the use of a multistage rocket consider the following: (a) A certain rocket carries
60% of its initial mass as fuel. (That is, the mass of fuel is 0.6m,.) What is the rocket’s final speed,
accelerating from rest in free space, if it burns all its fuel in a single stage? Express your answer as a
multiple of v.,. (b) Suppose instead it burns the fuel in two stages as follows: In the first stage it burns
a mass 0.3m,, of fuel. It then jettisons the first-stage fuel tank, which has a mass of 0.1m, and then
burns the remaining 0.3m, of fuel. Find the final speed in this case, assuming the same value of v,
throughout, and compare.

3.13 »x If you have not already done it, do Problem 3.11(b) and find the speed v(z) of a rocket
accelerating vertically from rest in a gravitational field g. Now integrate v(¢) and show that the rocket’s
height as a function of ¢ is

1, muy <m0)
y=v. t— —gt"— ——In{ —}.
V() = vy X P "

Using the numbers given in Problem 3.7, estimate the space shuttle’s height after two minutes.

3.14 »x Consider a rocket subject to a linear resistive force, f = —bv, but no other external forces. Use
Equation (3.29) in Problem 3.11 to show that if the rocket starts from rest and ejects mass at a constant
rate k = —m, then its speed is given by

k [ (m )b/k:|
V=~V | | = | — .
b m,

SECTION 3.3 The Center of Mass

3.15 * Find the position of the center of mass of three particles lying in the xy plane at ry = (1, 1, 0),
r, =(1,—-1,0), and r; = (0,0, 0), if m; = m, and m; = 10m,. Illustrate your answer with a sketch
and comment.

3.16 * The masses of the earth and sun are M, & 6.0 x 10** and M, ~ 2.0 x 10*° (both in kg) and
their center-to-center distance is 1.5 x 108 km. Find the position of their CM and comment. (The radius
of the sun is R, ~ 7.0 x 10° km.)

3.17 * The masses of the earth and moon are M, ~ 6.0 x 10%* and M, ~74 x 1022 (both in kg) and
their center to center distance is 3.8 x 10° km. Find the position of their CM and comment. (The radius
of the earth is R, ~ 6.4 x 10° km.)

3.18 *x (a) Prove that the CM of any two particles always lies on the line joining them, as illustrated
in Figure 3.3. [Write down the vector that points from m; to the CM and show that it has the same
direction as the vector from m | to m,.] (b) Prove that the distances from the CM to m, and m, are in
the ratio m,/m,. Explain why if m, is much greater than m,, the CM lies very close to the position of
m.

3.19 »* (a) We know that the path of a projectile thrown from the ground is a parabola (if we ignore air
resistance). In the light of the result (3.12), what would be the subsequent path of the CM of the pieces
if the projectile exploded in midair? (b) A shell is fired from level ground so as to hit a target 100 m
away. Unluckily the shell explodes prematurely and breaks into two equal pieces. The two pieces land
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at the same time, and one lands 100 m beyond the target. Where does the other piece land? (¢) Is the
same result true if they land at different times (with one piece still landing 100 m beyond the target)?

3.20 »x Consider a system comprising two extended bodies, which have masses M, and M, and centers
of mass at R; and R,. Prove that the CM of the whole system is at '
_ MR, + M)R,

M+ M,

R

This beautiful result means that in finding the CM of a complicated system, you can treat its component
parts just like point masses positioned at their separate centers of mass — even when the component
parts are themselves extended bodies.

3.21 »x A uniform thin sheet of metal is cut in the shape of a semicircle of radius R and lies in the xy
plane with its center at the origin and diameter lying along the x axis. Find the position of the CM using
polar coordinates. [In this case the sum (3.9) that defines the CM position becomes a two-dimensional
integral of the form f ro d A where o denotes the surface mass density (mass/area) of the sheet and
d A is the element of area dA = rdr d¢.]

3.22 »x Use spherical polar coordinates r, 8, ¢ to find the CM of a uniform solid hemisphere of radius
R, whose flat face lies in the xy plane with its center at the origin. Before you do this, you will need to
convince yourself that the element of volume in spherical polars is dV = r2dr sin § d0 d¢. (Spherical
polar coordinates are defined in Section 4.8. If you are not already familiar with these coordinates, you
should probably not try this problem yet.)

3.23 *#** [Computer] A grenade is thrown with initial velocity v, from the origin at the top of a high
cliff, subject to negligible air resistance. (@) Using a suitable plotting program, plot the orbit, with
the following parameters: v, = (4,4), g = 1, and 0 < ¢ < 4 (and with x measured horizontally and y
vertically up). Add to your plot suitable marks (dots or crosses, for example) to show the positions
of the grenade at r = 1,2, 3, 4. (b) At t = 4, when the grenade’s velocity is v, it explodes into two
equal pieces, one of which moves off with velocity v + Av. What is the velocity of the other piece?
(¢) Assuming that Av = (1, 3), add to your original plot the paths of the two pieces for4 < ¢ <9. Insert
marks to show their positions at t = 5, 6, 7, 8, 9. Find some way to show clearly that the CM of the two
pieces continues to follow the original parabolic path.

SECTION 3.4 Angular Momentum for a Single Particle

3.24 » If the vectors a and b form two of the sides of a triangle, prove that 1]a x b| is equal to the area
of the triangle.

3.25 % A particle of mass m is moving on a frictionless horizontal table and is attached to a massless
string, whose other end passes through a hole in the table, where I am holding it. Initially the particle
is moving in a circle of radius r, with angular velocity w,, but I now pull the string down through the
hole until a length r remains between the hole and the particle. What is the particle’s angular velocity
now?

3.26 * A particle moves under the influence of a central force directed toward a fixed origin O.
(a) Explain why the particle’s angular momentum about O is constant. (b) Give in detail the argument
that the particle’s orbit must lie in a single plane containing O.

3.27 »x Consider a planet orbiting the fixed sun. Take the plane of the planet’s orbit to be the xy plane,
with the sun at the origin, and label the planet’s position by polar coordinates (r, ¢). (a) Show that the
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planet’s angular momentum has magnitude £ = mr2w, where @ = ¢ is the planet’s angular velocity
about the sun. (b) Show that the rate at which the planet “sweeps out area” (as in Kepler’s second law)
isdA/dt = lr’w, and hence that dA /dt = £/2m. Deduce Kepler’s second law.

SECTION 3.5 Angular Momentum for Several Particles

3.28 » For a system of just three particles, go through in detail the argument leading from (3.20) to
(3.26), L = I'*™, writing out all the summations explicitly.

3.29 » A uniform spherical asteroid of radius R, is spinning with angular velocity w,. As the aeons go
by, it picks up more matter until its radius is R. Assuming that its density remains the same and that the
additional matter was originally at rest relative to the asteroid (anyway on average), find the asteroid’s
new angular velocity. (You know from elementary physics that the moment of inertia is %—M R?.) What
is the final angular velocity if the radius doubles? ’

3.30 »~ Consider a rigid body rotating with angular velocity w about a fixed axis. (You could think of
a door rotating about the axis defined by its hinges.) Take the axis of rotation to be the z axis and use
cylindrical polar coordinates p,, ¢,, z, to specify the positions of the particles =1, - - -, N that make
up the body. (a) Show that the velocity of the particle « is p, in the ¢ direction. (b) Hence show that
the z component of the angular momentum £, of particle « is m,, ,oaza). (c¢) Show that the z component
L, of the total angular momentum can be written as L, = I where I is the moment of inertia (for the
axis in question),

N
I=Y mypl. (3.31)
a=]

3.31 »* Find the moment of inertia of a uniform disc of mass M and radius R rotating about its axis,
by replacing the sum (3.31) by the appropriate integral and doing the integral in polar coordinates.

3.32 »x Show that the moment of inertia of a uniform solid sphere rotating about a diameter is %M R
The sum (3.31) must be replaced by an integral, which is easiest in spherical polar coordinates, with
the axis of rotation taken to be the z axis. The element of volume is dV = r2dr sin @ d6 d¢. (Spherical
polar coordinates are defined in Section 4.8. If you are not already familiar with these coordinates, you
should probably not try this problem yet.)

3.33 »» Starting from the sum (3.31) and replacing it by the appropriate integral, find the moment
of inertia of a uniform thin square of side 2b, rotating about an axis perpendicular to the square and
passing through its center.

3.34 +* A juggler is juggling a uniform rod one end of which is coated in tar and burning. He is holding
the rod by the opposite end and throws it up so that, at the moment of release, it is horizontal, its CM
is traveling vertically up at speed v, and it is rotating with angular velocity w,. To catch it, he wants
to arrange that when it returns to his hand it will have made an integer number of complete rotations.
What should v, be, if the rod is to have made exactly n rotations when it returns to his hand?

3.35»* Consider a uniform solid disk of mass M and radius R, rolling without slipping down an
incline which is at angle y to the horizontal. The instantaneous point of contact between the disk and
the incline is called P. (a) Draw a free-body diagram, showing all forces on the disk. (b) Find the linear
acceleration v of the disk by applying the result L = I'*** for rotation about P. (Remember that L = I»
and the moment of inertia for rotation about a point on the circumference is %M R?. The condition that
the disk not slip is that v = Rw and hence v = Rw.) (c) Derive the same result by applying L = Iex
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to the rotation about the CM. (In this case you will find there is an extra unknown, the force of friction.
You can eliminate this by applying Newton’s second law to the motion of the CM. The moment of
inertia for rotation about the CM 1s 1 M R?%)

3.36 *x Repeat the calculations of Example 3.4 (page 97) for the case that the force F acts in a
“northeasterly” direction at angle y from the x axis. What are the velocities of the two masses just
after the impulse has been applied? Check your answers for the cases that y = 0 and y = 90°.

3.37 »xx A system consists of N masses m, at positions r, relative to a fixed origin O. Let r/, denote
the position of m, relative to the CM; that is, r/, =, — R. (a) Make a sketch to illustrate this last
equation. (b) Prove the useful relation that )~ m,r! = 0. Can you explain why this relation is nearly
obvious? (c) Use this relation to prove the result (3.28) that the rate of change of the angular momentum
about the CM is equal to the total external torque about the CM. (This result is surprising since the CM
may be accelerating, so that it is not necessarily a fixed point in any inertial frame.)



CHAPTER

This chapter takes up the conservation of energy. You will see that the analysis of
energy conservation is surprisingly more complicated than the corresponding discus-
sions of linear and angular momenta in Chapter 3. The main reason for the difference
is this: In almost all problems of classical mechanics there is only one kind of linear
momentum (p = myv for each particle), and one kind of angular momentum ({ =r X p
for each particle). By contrast, energy comes in many different and important forms:
kinetic, several kinds of potential, thermal, and more. It is the processes that trans-
form energy from one kind to another that complicate the use of energy conservation.
We shall see that conservation of energy is a quite subtle business, even for a system
consisting of just a single particle.

One manifestation of the relative difficulty of the discussion of energy is that we
shall need some new tools from vector calculus, namely, the concepts of the gradient
and the curl. I shall introduce these important ideas as we need them.

4.1 Kinetic Energy and Work

As I have said, there are many different kinds of energy. Perhaps the most basic is
kinetic energy (or KE), which for a single particle of mass m traveling with speed v
is defined to be ‘

T = imv’. @.1)

Let us imagine the particle moving through space and examine the change in its kinetic
energy as it moves between two neighboring points r; and r; + dr on its path as shown

in Figure 4.1. The time derivative of T is easily evaluated if we note that v> = v . v,
so that

iT | d oo . .
EIEmE(V'V):Em(V'V-i-V'V):mV'V. (42) 105
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Figure 4.1 Three points on the path of a particle:
r;, ] + dr (with dr infinitesimal) and r,.

By the second law, the factor mv is equal to the net force F on the particle, so that

dT
— =F.v. 4.3
I (4.3)

If we multiply both sides by dt, then since v dt is the displacement dr we find
dT =F -dr. 4.4)

The expression on the right, F - dr, is defined to be the work done by the force F in
the displacement dr. Thus we have proved the Work—KE theorem, that the change
in the particle’s kinetic energy between two neighboring points on its path is equal to
the work done by the net force as it moves between the two points.!

So far we have proved the Work—KE theorem only for an infinitesimal displace-
ment dr, but it generalizes easily to larger displacements. Consider the two points
shown as ry and r, in Figure 4.1. We can divide the path between these points 1 and
2 into a large number of very small segments, to each of which we can apply the in-
finitesimal result (4.4). Adding all of these results, we find that the total change in T
going from 1 to 2 is the sum Y_F -dr of all the infinitesimal works done in all the
infinitesimal displacements between points 1 and 2:

AT =T,—T;=) F-dr. ‘ (4.5)

In the limit that all the displacements dr go to zero, this sum becomes an integral:

2
ZF-dr—>f F . dr. (4.6)
1

I"Two points that can be puzzling at first: The work F -dr can be negative, if for example
F and dr point in opposite directions. While the notion of a force doing negative work conflicts
with our everyday notion of work, it is perfectly consisent with the physicist’s definition: A force
in the opposite direction to the displacement reduces the KE, so, by the work—-KE theorem, the
corresponding work has to be negative. Second, if F and dr are perpendicular, then the work ¥ - dr
is zero. Again this conflicts with our everyday sense of work, but is consistent with the physicist’s
usage: A force that is perpendicular to the displacement does not change the KE.
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This integral, called a line integral,? is a generalization of the integral f f(x)dx over
a single variable x, and its definition as the limit of the sum of many small pieces
is closely analogous. If you feel any doubt about the symbol | 12 F - dr on the right
of (4.6), think of it as being just the sum on the left (with all the displacements
infinitesimally small). In evaluating a line integral, it is usually possible to convert
it into an ordinary integral over a single variable, as the following examples show.
Notice that, as the name implies, the line integral depends (in general) on the path
that the particle followed from point 1 to point 2. The particular line integral on the
right of (4.6) is called the work done by the force F moving between points 1 and 2
along the path concerned.

R R S

EXAMPLE 4.1 Three Line Integrals

Evaluate the line integral for the work done by the two-dimensional force
F = (y, 2x) going from the origin O to the point P = (1, 1) along each of the
three paths shown in Figure 4.2. Path a goes from O to Q = (1, 0) along the x
axis and then from Q straight up to P, path b goes straight from O to P along
the line y = x, and path ¢ goes round a quarter circle centered on Q.

The integral along path a is easily evaluated in two parts, if we note that
on OQ the displacements have the form dr = (dx, 0), while on Q P they are
dr = (0, dy). Thus

0 P 1 1
Wa:/F-dr:/ F-dr+/ F-dr:/ Fx(x,O)dx+/ Fy(1,y)dy
a o o) 0 0

1
:0+2f dy =2.
0

A Y
14 P
c
b
M
/ X
0 Qo

Figure 4.2 Three different paths, a, b, and ¢, from the
origin to the point P = (1, 1).

2 Not an especially happy name for those of us who think of a line as something straight. However,
there are curved lines as well as straight lines, and in general a line integral can involve a curved
line, such as the path shown in Figure 4.1.
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On the path b, x = y, so that dx = dy, and

1
W, = /F-dl‘z /(dex + F,dy) =/ (x + 2x)dx = 1.5.
b b 0
Path c is conveniently expressed parametrically as
r=(x,y)=(1—cos6,sinf)

where 6 is the angle between O Q and the line from Q to the point (x, y), with
0 <6 < m/2. Thus on path ¢

dr = (dx,dy) = (sinf, cos9) dO

and

WC=/F-dr=/(dex+Fydy)

/2
- / [sin29 +2(1 — cos6) cos 9] d6 =2 — 1/4 = 121.
0

R s R S e S

Some more examples can be found in Problems 4.2 and 4.3 and, if you have never
studied line integrals, you may want to try some of these.
With the notation of the line integral, we can rewrite the result (4.5) as

where I have introduced the notation W (1 — 2) for the work done by F moving from
point 1 to point 2. The result is the Work—KE theorem for arbitrary displacements,
large or small: The change in a particle’s KE as it moves between points 1 and 2 is
the work done by the net force.

It is important to remember that the work that appears on the right of (4.7) is the
work done by the net force F on the particle. In general, F is the vector sum of various
separate forces

n
i=1

(For example, the net force on a projectile is the sum of two forces, the weight and
air resistance.) It is a most convenient fact that to evaluate the work done by the net
force F, we can simply add up the works done by the separate forces Fy, - - -, F,,. This
claim is easily proved as follows:

2 2
W{l—>2)= | F.dr= F,-d
(1-2) fl r fIZ i -dr
2
=Z/ F,-dr=Y W1 2). 4.8)
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The crucial step, from the first line to the second, is justified because the integral of
a sum of n terms is the same as the sum of the » individual integrals. The Work-KE
theorem can therefore be rewritten as

T,—Ty=) Wi(1-2). (4.9)

i=I

In practice, one almost always uses the theorem in this way: Calculate the work W,
done by each of the n separate forces on the particle and then set AT equal to the sum
of all the W;.

If the net force on a particle is zero, then the Work—KE theorem tells us that the
particle’s kinetic energy is constant. This simply says that the speed v is constant,
which, though true, is not very interesting, since it already follows from Newton’s
first law.

4.2 Potential Energy and Conservative Forces

The next step in the development of the energy formalism is to introduce the notion
of potential energy (or PE) corresponding to the forces on an object. As you probably
recall, not every force lends itself to the definition of a corresponding potential energy.
Those special forces that do have a corresponding potential energy (with the required
properties) are called conservative forces, and we must discuss the properties that
distinguish conservative from nonconservative forces. Specifically, we shall find that
there are two conditions that a force must satisfy to be considered conservative.

To simplify our discussion, let us assume at first that there is only one force acting
on the object of interest — the gravitational force on a planet by its sun, or the electric
force gE on a charge in an electric field (with no other forces present). The force F may
depend on many different variables: It may depend on the object’s position r. (The
farther the planet is from the sun, the weaker the gravitational pull.) It may depend
on the object’s velocity, as is the case with air resistance; and it may depend on the
time ¢, as would be the case for a charge in a time-varying electric field. Finally, if the
force is exerted by humans, it will depend on a host of imponderables — how tired
they are feeling, how conveniently they are situated to push, and so on.

The first condition for a force F to be conservative is that F depends only on the
position r of the object on which it acts; it must not depend on the velocity, the time, or
any variables other than r. This sounds, and is, quite restrictive, but there are plenty of
forces that have this property: The gravitational force of the sun on a planet (position
r relative to the sun) can be written as

GmM

r

F(r) = - r

which evidently depends only on the variable r. (The parameters G, m, M are constant
for a given planet and given sun.) Similarly, the electrostatic force F(r) = gE(r) on a
charge g by a static electric field E(r) has this property. Forces that do not satisfy this
condition include the force of air resistance (which depends on the velocity), friction
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Figure 4.3 Three different paths, a, b, and c, joining the
same two points 1 and 2.

(which depends on the direction of motion), the magnetic force (which depends on
the velocity), and the force of a time-varying electric field E(r, ¢) (which obviously
depends on time).

The second condition that a force must satisfy to be called conservative concerns
the work done by the force as the object on which it acts moves between two points
r; and r, (or just 1 and 2 for short),

2
W(l—2)= / F.dr. (4.10)
1

Figure 4.3 shows two points, 1 and 2, and three different paths connecting them. It is
entirely possible that the work done between points 1 and 2, as defined by the integral
(4.10), has different values depending on which of the three paths, a, b, or c, the
particle happens to follow. For example, consider the force of sliding friction as I
push a heavy crate across the floor. This force has a constant magnitude, Fi;. say, and
is always opposite to the direction of motion. Thus the work done by friction as the
crate moves from 1 to 2 is given by (4.10) to be

Wfric(l v d 2) = _FfricL’

where L denotes the length of the path followed. The three paths of Figure 4.3 have
different lengths, and Wy, (1 — 2) will have a different value for each of the three
paths.

On the other hand, there are forces with the property that the work W (1 — 2) is
the same for any path connecting the same two points 1 and 2. An example of a force
with this property is the gravitational force, Fy,, = mg, of the earth on an object close
to the earth’s surface. It is easy to show (Problem 4.5) that, because g is a constant
vector pointing vertically down, the work done in this case is

Woray(1 = 2) = —mgh, (4.11)

where £ is just the vertical height gained between points 1 and 2. This work is the
same for any two paths between the given points 1 and 2. This property, the path
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independence of the work it does, is the second condition that a force must satisfy to
be considered conservative, and we are now ready to state the two conditions:

. crz aﬁ p&ths bﬁtw&m ‘ 3‘ ;md 2

The reason for the name “conservative” and for the importance of the concept is
this: If all forces on an object are conservative, we can define a quantity called the
potential energy (or just PE), denoted U (r), a function only of position, with the
property that the total mechanical energy

E=KE+PE=T 4+ U(r) (4.12)

is constant; that is, E is conserved.

To define the potential energy U (r) corresponding to a given conservative force,
we first choose a reference point r, at which U is defined to be zero. (For example,
in the case of gravity near the earth’s surface, we often define U to be zero at ground
level.) We then define U (r), the potential energy at an arbitrary point r, to be>

In words, U (r) is minus the work done by F if the particle moves from the reference
point r, to the point of interest r, as in Figure 4.4. (We shall see the reason for the
minus sign shortly.) Notice that the definition (4.13) only makes sense because of the
property (ii) of conservative forces. If the work integral in (4.13) were different for
different paths, then (4.13) would not define a unique function* U (r).

3 Notice that I have called the variable of integration r’ to avoid confusion with the upper limit r.

4 The definition (4.13) also depends on property (i) of conservative forces, but in a slightly subtler
way. If F depended on another variable besides r (for instance, ¢ or v), then the right side of (4.13)
would depend on when or how the particle moved from r,, to r, and again there would be no uniquely
defined U (r).
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o

Figure 4.4 The potential energy U (r) at any point r is de-
fined as minus the work done by F if the particle moves from
the reference point r, to r. This gives a well-defined function
U (r) only if this work is independent of the path followed —
that is, the force is conservative.

R R R

R R

EXAMPLE 4.2 Potential Energy of a Charge in a Uniform Electric Field

A charge ¢ is placed in a uniform electric field pointing in the x direction with
strength E,, so that the force on g is F = gE = g EX. Show that this force is
conservative and find the corresponding potential energy.

The work done by F going between any two points 1 and 2 along any path is

2 2 2
W(1—>2)=f F-dr:quf f(-dr:quf dx = gE (x, — x)). (4.14)
1 1 1

This depends only on the two end points 1 and 2. (In fact it depends only on their
x coordinates x; and x,.) Certainly, it is independent of the path, and the force is
conservative. To define the corresponding potential energy U (r), we must first
pick a reference point r,, at which U will be zero. A natural choice is the origin,

r, = 0, in which case the potential energy is U (r) = —W (0 — r) or, according
to (4.14),
U(r)=—qE.
B O o o

We can now derive a crucial expression for the work done by F in terms of the
potential energy U (r). Let r; and r, be any two points as in Figure 4.5. If r, is the
reference point at which U is zero, then it is clear from Figure 4.5 that

W, = 1) =W, —>r)+ W — 1)
and hence
W, — 1) =W, —>ry) — W, —>r). (4.15)

Each of the two terms on the right is (minus) the potential energy at the corresponding
point. Thus we have proved that the work on the left is just the difference of these two
potential energies:

W, —ry) =—[U,) —U()]l=—AU. (4.16)
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r

ry

To

Figure 4.5 The work W (r; — r,) going from r, to r, is the
same as W (r, — r,) minus W (r, — r;). This result is inde-
pendent of what path we use for either limb of the journey,
provided the force concerned is conservative.

The usefulness of this result emerges when we combine it with the Work—KE
theorem (4.7):

AT =W (| — ry). (4.17)
Comparing this with (4.16), we see that
AT = —AU (4.18)
or, moving the right side across to the left,’
AT +U)=0. (4.19)
That is, the mechanical energy
E=T+U (4.20)

does not change as the particle moves from r; to r,. Since the points r; and r, were any
two points on the particle’s trajectory, we have the important conclusion: If the force
on a particle is conservative, then the particle’s mechanical energy never changes;
that is, the particle’s energy is conserved, which explains the use of the adjective
“conservative.”

Several Forces

So far we have established the conservation of energy for a particle subject to a single
conservative force. If the particle is subject to several forces, all of them conservative,
our result generalizes easily. For instance, imagine a mass suspended from the ceiling
by a spring. This mass is subject to two forces, the forces of gravity (Fg,,) and the
spring (Fy,). The force of gravity is certainly conservative (as I've already argued),

and, provided the spring obeys Hooke’s law, F, is likewise (see Problem 4.42). We

3> We now see the reason for the minus sign in the definition of U. It gives the minus sign on the
right of (4.18), which in turn gives the desired plus sign on the left of (4.19).
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spr spr>

each with the crucial property (4.16) that the change in U gives (minus) the work done
by the corresponding force. According to the Work—KE theorem, the change in the
mass’s kinetic energy is

can define separate potential energies for each force, Upy,, for Fp,, and Ugy, for F

AT =Wy, + W,

grav spr
= — (AU + AUg) , (4.21)

where the second line follows from the properties of the two separate potential
energies. Rearranging this equation, we see that A(T + Uggy + Ugy,) = 0. That is,
the total mechanical energy, defined as E = T + Uy, + Ugy, is conserved.

The argument just given extends immediately to the case of n forces on a particle,
so long as they are all conservative. If for each force F; we define a corresponding

potential energy U,, then we have the

Nonconservative Forces

If some of the forces on our particle are nonconservative, then we cannot define corre-
sponding potential energies; nor can we define a conserved mechanical energy. Nev-
ertheless, we can define potential energies for all of the forces that are conservative,
and then recast the Work—KE theorem in a form that shows how the nonconservative
forces change the particle’s mechanical energy. First, we divide the net force on the
particle into two parts, the conservative part F .. and the nonconservative part F.
For F,, we can define a potential energy, which we’ll call just U. By the Work-KE
theorem, the change in kinetic energy between any two times is

AT =W = W,y + Wi (4.23)

The first term on the right is just —AU and can be moved to the left side to give
A(T + U) = W,.. If we define the mechanical energy as E =T + U, then we see
that

AE=AT +U) =W,. (4.24)

Mechanical energy is no longer conserved, but we have the next best thing. The
mechanical energy changes to precisely the extent that the nonconservative forces
do work on our particle. In many problems the only nonconservative force is the force
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of sliding friction, which usually does negative work. (The frictional force f is in
the direction opposite to the motion, so the work f - dr is negative.) In this case W,
is negative and (4.24) tells us that the object loses mechanical energy in the amount
“stolen” by friction. All of these ideas are illustrated by the following simple example.

b e

NG A R S e e N S S S S
EXAMPLE 4.3 Block Sliding Down an Incline

Consider again the block of Example 1.1 and find its speed v when it reaches
the bottom of the slope, a distance d from its starting point.

The setup and the forces on the block are shown in Figure 4.6. The three
forces on the block are its weight, w = mg, the normal force of the incline,
N, and the frictional force f, whose magnitude we found in Example 1.1 to be
f = umg cos 0. The weight mg is conservative, and the corresponding potential
energy is (as you certainly recall from introductory physics, but see Problem 4.5)

U=mgy

where y is the block’s vertical height above the bottom of the slope (if we
choose the zero of PE at the bottom). The normal force does no work, since it is
perpendicular to the direction of motion, so will not contribute to the energy
balance. The frictional force does work Wy, = —fd = —umgd cos6. The
change in kinetic energy is AT =T; — T, = %m v? and the change in potential
energy is AU = U; — U; = —mgh = —mgd sin 6. Thus (4.24) reads

AT + AU = Wfric

or

%va —mgd sinf = —umgd cosb.

Solving for v we find

V= \/ng(siné? — pmcosé).

Figure 4.6 A block on an incline of angle 6. The length
of the slope is d, and the height is & = d sin 6.
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! As usual, you should check that this answer agrees with common sense. For
‘ example, does it give the expected answer when 8 = 90°? What about 8 = 0?
? (The case & = 0 is a bit subtler.)

m&%‘aﬁm@w R

4.3 Force as the Gradient of Potential Energy

We have seen that the potential energy U(r) corresponding to a force F(r) can be
expressed as an integral of F(r) as in (4.13). This suggests that we should be able to
write F(r) as some kind of derivative of U (r). This suggestion proves correct, though
to implement it we shall need some mathematics that you may not have met before.
Specifically, since F(r) is a vector [while U (r) is a scalar] we shall be involved in
some vector calculus.

Letus consider a particle acted on by a conservative force F(r), with corresponding
potential energy U (r), and examine the work done by F(r) in a small displacement
from r to r 4 dr. We can evaluate this work in two ways. On the one hand, it is, by
definition,

W({r — r+dr) = F(r) -dr
= F,dx + F,dy + F,dz, (4.25)
for any small displacement dr with components (dx, dy, dz).

On the other hand, we have seen that the work W (r — r+dr) is the same as
(minus) the change in PE in the displacement:

W — r+dr) = —dU = —[U(r +dr) — U(r)]
=—-[U(x+dx,y+dy,z+dz) —U(x,y,z)] (4.26)

In the second line, I have replaced the position vector r by its components to emphasize
that U is really a function of the three variables (x, y, z). Now, for functions of one
variable, a difference like that in (4.26) can be expressed in terms of the derivative:

df = f(x +dx) — f(x) = %dx. 4.27)

This is really no more than the definition of the derivative.® For a function of three
variables, such as U (x, y, z), the corresponding result is

dU=Ux+dx,y+dy,z+dz) —U(x,y,z)

= S_dx+ ——dy + ——dz (4.28)

where the three derivatives are the partial derivatives with respect to the three in-
dependent variables (x, y, z). [For example, dU/dx is the rate of change of U as x

6 Strictly speaking, this equation is exact only in the limit that dx — 0. As usual, I take the view
that dx is small enough (though nonzero) that the two sides are equal within our chosen accuracy
target.
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changes, with y and z fixed, and is found by differentiating U (x, y, z) with respect
to x treating y and z as constants. See Problems 4.10 and 4.11 for some examples.]
Substituting (4.28) into (4.26), we find that the work done in the small displacement
fromrtor + dris

oU oUu oU ] (4.29)

W —r+dr)=— | —dx + —dy + —dz
ox ay 0z

The two expressions (4.25) and (4.29) are both valid for any small displacement dr.

In particular, we can choose dr to point in the x direction, in which case dy = dz =0

and the last two terms in both (4.25) and (4.29) are zero. Equating the remaining terms,

we see that F;, = —9U /dx. By choosing dr to point in the y or z directions, we get
corresponding results for F, and F,, and we conclude that

U
_ P oU . oU

F, = (4.30)

ax’ Y ay 2T 8z
That is, F is the vector whose three components are minus the three partial derivatives
of U with respect to x, y, and z. A slightly more compact way to write this result is
this:

F=—x——y——-—72—. (4.31)

Relationships like (4.31) between a vector (F) and a scalar (U) come up over and
over again in physics. For example, the electric field E is related to the electrostatic
potential V in exactly the same way. More generally, given any scalar f(r), the vector
whose three components are the partial derivatives of f(r) is called the gradient of
f,denoted Vf:

Vf:f(-ai +§fy- +i%. 4.32)
0x ay 0z

The symbol V£ is pronounced “grad f.” The symbol V by itself is called “grad,” or
“del,” or “nabla.” With this notation, (4.31) is abbreviated to

This important relation gives us the force F in terms of derivatives of U, just as the
definition (4.13) gave U as an integral of F. When a force F can be expressed in the
form (4.33), we say that F is derivable from a potential energy. Thus, we have shown
that any conservative force is derivable from a potential energy.’

71 am following standard terminology here. Notice that we have defined “conservative” so that
a conservative force conserves energy and is derivable from a potential energy. This is occasionally
confusing, since there are forces (such as the magnetic force on a charge or the normal force on a
sliding object) that do no work and hence conserve energy, but are not “conservative” in the sense
defined here, since they are not derivable from a potential energy. This unfortunate confusion seldom
causes trouble, but you may want to register it somewhere in the back of your mind.
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EXAMPLE 44 Finding F from U

The potential energy of a certain particle is U = Axy? + B sin Cz, where A, B
and C are constants. What is the corresponding force?

To find F we have only to evaluate the three partial derivatives in (4.31).
In doing this, you must remember that dU /dx is found by differentiating with
respect to x, treating y and z as constant, and so on. Thus dU/dx = Ay?, and
so on, and the final result is

F=—(XAy> +§2Axy + 2 BC cosCz).

e e e e e R e

It is sometimes convenient to remove the f from (4.32) and to write
(4.34)

In this view, V is a vector differential operator that can be applied to any scalar f and
produces the vector given in (4.32).

A very useful application of the gradient is given by (4.28), whose right-hand side
you will recognize as VU -dr. Thus, if we replace U by an arbitrary scalar f, we see
that the change in f resulting from a small displacement dr is just

This useful relation is the three-dimensional analog of Equation (4.27) for a function
of one variable. It shows the sense in which the gradient is the three-dimensional
equivalent of the ordinary derivative in one dimension.

If you have never met the V notation before, it will take a little getting used
to. Meanwhile, you can just think of (4.33) as a convenient shorthand for the three
equations (4.30). For practice using the gradient, you could look at Problems 4.12
through 4.19.

4.4 The Second Condition that F be Conservative

We have seen that one of the two conditions that a force F be conservative is that
the work || 12 F - dr which it does moving between any two points 1 and 2 must be
independent of the path followed. You are certainly to be excused if you don’t see
how we could test whether a given force has this property. Checking the value of
the integral for every pair of points and every path joining those points is indeed a
formidable prospect! Fortunately, we never need to do this. There is a simple test,
which can be quickly applied to any force that is given in analytic form. This test
involves another of the basic concepts of vector calculus, this time the so-called cur/
of a vector.
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It can be shown (though I shall not do so here®) that a force F has the desired
property, that the work it does is independent of path, if and only if

VxF=0 (4.36)

everywhere. The quantity V x F is called the curl of F, or just “curl F,” or “del cross
F> It is defined by taking the cross product of V and F just as if the components
of V, namely (d/0x, d/dy, d/9z), were ordinary numbers. To see what this means,
consider first the cross product of two ordinary vectors A and B. In the table below, I
have listed the components of A, B, and A x B:

vector x component ycomponent z component

A A, A, A, 437)
B B, B, B,
AxB AB,—A,B, AB,—AB, AB,—AB,

The components of V x F are found in exactly the same way, except that the entries
in the first row are differential operators. Thus,
vector x component y component z component

\% a/0x a/0dy d/0z
F F, F, F

(4.38)

9 3 3 9 3 “ 4
V xF @FZ—B_ZF)’ —B_ZFx_g}_FZ EFy—EFx
No one would claim that (4.36) is obviously equivalent to the condition that
f 12 F - dr is path-independent, but it is, and it provides an easily applied test for the
path-independence property, as the following example shows.

e s : S

EXAMPLE 4.5 Is the Coulomb Force Conservative?

Consider the force F on a charge g due to a fixed charge Q at the origin. Show
that it is conservative and find the corresponding potential energy U. Check that
—VU =F.

The force in question is the Coulomb force, as shown in Figure 4.7(a),

kqQ. _ v . (4.39)

2 3

F =

where k denotes the Coulomb force constant, often written as 1/(4me,), and y
is just an abbreviation for the constant kg Q. From the last expression we can
read off the components of F, and using (4.38) we can calculate the components
of V x F. For example, the x component is

(VxF), = LF iFy _ 2 (ﬁ) _9 (ﬂ) . (4.40)
dy 0z dy \ r3 oz \ r3

8 The condition (4.36) follows from a result called Stokes’s theorem. If you would like to explore
this a little, see Problem 4.25. For more details, see any text on vector calculus or mathematical
methods. I particularly like Mathematical Methods in the Physical Sciences by Mary Boas (Wiley,
1983), p. 260.
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(@) (b)

Figure 4.7 (a) The Coulomb force F = yt/ r? of the fixed
charge O on the charge ¢g. (b) The work done by F as g
moves from r, to r can be evaluated following a path that
goes radially outward to P and then around a circle to r.

The two derivatives here are easily evaluated: First, since dz/dy = dy/dz = 0,
we can rewrite (4.40) as

(VxF),=vyz (—?——r_3) —yy (—a—r_3) . (4.41)
ay 0z

Next recall that
r=u>+y +2)",
so that, for example,

or_ 7. (4.42)
ay r

(Check this one using the chain rule.) We can now evaluate the two remaining
derivatives in (4.41) to give (remember the chain rule again)

(VxF)x=VZ(:4§-X)——Vy(zg-f)za
r r r r

The other two components work in exactly the same way (check it, if you don’t
believe me), and we conclude that V x F = 0. According to the result (4.36),
this guarantees that F satisfies the second condition to be conservative. Since
it certainly satisfies the first condition (it depends only on the variable r), we
have proved that F is conservative. (The proof that V x F = 0 is considerably
quicker in spherical polar coordinates. See Problem 4.22.)

The potential energy is defined by the work integral (4.13),

r
Ur)= - f F@') . dr’ (4.43)

To
where r, is the (as yet unspecified) reference point where U (r,) = 0. Fortu-
nately, we know that this integral is independent of path, so we can choose
whatever path is most convenient. One possibility is shown in Figure 4.7(b),
where I have chosen a path that goes radially outward to the point labeled P
and then around a circle (centered on Q) to r. On the first segment, F(r’) and
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dr’ are collinear, and F(r') - dr’ = (y /r’*)dr’. On the second, F(r’) and dr’ are
perpendicular, so no work is done along this segment, and the total work is just
that of the first segment,

v =-| Lar=X_L (4.44)
r/

ro r Yo

Finally, it is usual in this problem to choose the reference point r, at infinity, so
that the second term here is zero. With this choice (and replacing y by kg Q) we
arrive at the well-known formula for the potential energy of the charge g due

to Q,

Ur)=U(r) = @. (4.45)

Notice that the answer depends only on the magnitude r of the position vector
r and not on the direction.
To check VU let us evaluate the x component:

@Q):_QQ.Q

4.46
r2  Ox ( )

3
VU), = —
(VU), ax(

r

where the last expression follows from the chain rule. The derivative dr/9x is
x/r [compare Equation (4.42)], so

X
(VU), = —kq Q= = —F,,
r

as given by (4.39). The other two components work in exactly the same way,
and we have shown that

VU = —F (4.47)

as required.

e s g i

4.5 Time-Dependent Potential Energy

We sometimes have occasion to study a force F(r,?) that satisfies the second condition
to be conservative (V x F = 0), but, because it is time-dependent, does not satisfy
the first condition. In this case, we can still define a potential energy U (r, t) with
the property that F = — VU, but it is no longer the case that total mechanical energy,
E =T + U, is conserved. Before I justify these claims, let me give an example of this
situation. Figure 4.8 shows a small charge ¢ in the vicinity of a charged conducting
sphere (for example, a Van de Graaff generator) with a charge Q(¢) that is slowly
leaking away through the moist air to ground. Because Q(¢) changes with time, the
force that it exerts on the small charge ¢ is explicitly time-dependent. Nevertheless,
the spatial dependence of the force is the same as for the time-independent Coulomb

force of Example 4.5 (page 119). Exactly the same analysis as in that example shows
that V x F = 0.
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Q)
_‘ F= kq%(t) :
 — r

Figure 4.8 The charge Q(¢) on the conducting sphere is
slowly leaking away, so the force on the small charge ¢
varies with time, even if its position r is constant.

Let me now justify the claims made above. First, since V x F(r, t) = 0, the same
mathematical theorem quoted in connection with Equation (4.36) guarantees that the
work integral f 12 F(r, t) - dr (evaluated at any one time ¢) is path independent. This
means we can define a function U (r, ¢) by an integral exactly analogous to (4.13),

U,t)=—- /rF(r’, t) - dr’, (4.48)

o

and, for the same reasons as before, F(r,t) = —VU(r, t). (See Problem 4.27.) In this
case, we can say the force F is derivable from the time-dependent potential energy
Ur,1).

So far everything has gone through just as before, but now the story changes. We
can define the mechanical energy as E = T + U, but it is no longer true that E is
conserved. If you review carefully the argument leading to Equation (4.19), you may
be able to see what goes wrong, but we can in any case show directly that E =T + U
changes as the particle moves on its path. As before, consider any two neighboring
points on the particle’s path at times ¢ and ¢ + d¢. Exactly as in (4.4), the change in
kinetic energy is

dT = fg—dt — (mv -v)dt = F -dr. (4.49)

Meanwhile, U(r, t) = U(x, y, z, t) is a function of four variables (x, y, z, t) and

dUu = i)—l—]-afx + &dy + &dz + f9—~U~dl‘. (4.50)
ax ay dz at

You will recognize the first three terms on the right as VU -dr = —F - dr. Thus

dU = —F -dr + aa—[t]dt. (4.51)

When we add this to Equation (4.49) the first two terms cancel, and we are left with

d(T +U) = %dr. (4.52)

Clearly it is only when U is independent of ¢ (that is, dU /3¢ = 0) that the mechanical
energy E =T + U is conserved.
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Returning to the example of Figure 4.8, we can understand this conclusion and
see what has happened to conservation of energy. Imagine that I hold the charge g
stationary at the position of Figure 4.8, while the charge on the sphere leaks away.
Under these conditions, the KE of ¢ doesn’t change, but the potential energy kg Q(¢)/r
slowly diminishes to zero. Clearly T 4 U is not constant. However, while mechanical
energy is not conserved, fotal energy is conserved: The loss of mechanical energy
is exactly balanced by the gain of thermal energy as the discharge current heats up
the surrounding air. This example suggests, what is true, that the potential energy
depends explicitly on time in precisely those situations where mechanical energy gets
transformed to some other form of energy or to mechanical energy of other bodies
external to the system of interest.

4.6 Energy for Linear One-Dimensional Systems

So far we have discussed the energy of a particle that is free to move in all three
dimensions. Many interesting problems involve an object that is constrained to move
in just one dimension, and the analysis of such problems is remarkably simpler than
the general case. Oddly enough, there is some ambiguity in what a physicist means
by a “one-dimensional system.” Many introductory physics texts start out discussing
the motion of a one-dimensional system, by which they mean an object (a railroad
car, for instance) that is confined to move on a perfectly straight, or linear, track.
In discussing such linear systems, we naturally take the x axis to coincide with the
track, and the position of the object is then specified by the single coordinate x. In
this section I shall focus on linear one-dimensional systems. However, there are much
more complicated systems, such as a roller coaster on its curving track, that are also
one-dimensional, inasmuch as their position can be specified by a single parameter
(such as the distance of the roller coaster along its track). As I shall discuss in the next
section, energy conservation for such curvilinear one-dimensional systems is just as
straightforward as for a perfectly straight track.

To begin, let us consider an object constrained to move along a perfectly straight
track, which we take to be the x axis. The only component of any force F that can
do work is the x component, and we can simply ignore the other two components.
Therefore the work done by F is the one-dimensional integral

Wx, — xp) = f ’ F.(x)dx. (4.53)
X1
If the force is to be conservative, F, must satisfy the two usual conditions: (i) It must
depend only on the position x [as I have already implied in writing the integral (4.53)].
(ii) The work (4.53) must be independent of path. The remarkable feature of one-
dimensional systems is that the first condition already guarantees the second, so the
latter is superfluous. To understand this property, you have only to recognize that
in one dimension there is only a small choice of paths connecting any two points.
Consider, for example, the two points A and B shown in Figure 4.9. The obvious path
between points A and B is the path that gdes from A directly to B (let’s call this path
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A Be—C

Figure 4.9 The path called ABC B goes from A past B
and on to C, then back to B.

“AB”). Another possibility, shown in the figure, is to go from A past B to C and then
back to B (let’s call this one “ABC B”). The work done along this path can be broken
up as follows:

W(ABCB) = W(AB) + W(BC) + W(CB).

Now, provided the force depends only on the position x [condition (i)] each
increment of work going from B to C is exactly equal (but of opposite sign) to the
corresponding contribution going from C to B. That is, the last two terms on the right
cancel, and we conclude that

W(ABCB) = W(AB),

as required. One can of course concoct a path from A to B that doubles back and
forth many times, but a little thought should convince you that any such path can be
broken into a number of segments some of which together traverse the direct path AB
exactly once, and all the rest of which cancel in pairs. Thus the work done on any
path between A and B is the same as that on the direct path AB, and we have proved
that in one dimension the first condition for a force to be conservative guarantees the
second.

Graphs of the Potential Energy

A second useful feature of one-dimensional systems is that with only one independent
variable (x) we can plot the potential energy U (x), and, as we shall see, this makes
it easy to visualize the behavior of the system. Assuming all forces on the object are
conservative, we define the potential energy as

Ukx)=— fx F.(x")dx' (4.54)

o

where F is the x component of the net force on the particle. For example, for a mass
on the end of a spring obeying Hooke’s law, the force is F, = —kx, and, if we choose
the reference point x, = 0, Equation (4.54) gives the celebrated result

U = 1kx?

for any spring obeying Hooke’s law.
Corresponding to the three-dimensional result F = —VU, we have the simpler
result in one dimension

o _ _dU

T dx’

(4.55)
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Figure 410 The graph of potential energy U (x) against
x for any one-dimensional system can be thought of as a
picture of a roller coaster track. The force F, = —dU /dx
tends to push the object “downhill” as at x; and x,. At the
points x3 and x4, where U (x) is minimum or maximum,
dU /dx = 0 and the force is zero; such points are therefore
points of equilibrium.

If we plot the potential energy against x as in Figure 4.10, we can easily see qualita-
tively how the object has to behave. The direction of the net force is given by (4.55) as
“downhill” on the graph of U (x) — to the left at x; and to the right at x,. It follows that
the object always accelerates in the “downhill” direction — a property that reminds
one of the motion of a roller coaster, which also always accelerates downhill. This
analogy is not an accident: For a roller coaster, U (x) is mgh (where h is the height
above ground) and the graph of U (x) against x has the same shape as a graph of &
against x, which is just a picture of the track. For any one-dimensional system, we
can always think about the graph of U (x) as a picture of a roller coaster, and common
sense will generally tell us the kind of motion that is possible at different places, as I
now describe.

At points, such as x3 and x4, where dU /dx = 0 and U (x) is minimum or maximum,
the net force is zero, and the object can remain in equilibrium. That is, the condition
dU /dx = 0 characterizes points of equilibrium. At x5, where d*U /dx* > 0 and U (x)
is minimum, a small displacement from equilibrium causes a force which pushes the
object back to equilibrium (back to the left on the right of x5, back to the right on the left
of x3). In other words, equilibrium points where d?U /dx? > 0 and U (x) is minimum
are points of stable equilibrium. At equilibrium points like x, where d*U/dx* < 0
and U (x) is maximum, a small displacement leads to a force away from equilibrium,
and the equilibrium is unstable.

If the object is moving then its kinetic energy is positive and its total energy is
necessarily greater than U (x). For example, suppose the object is moving some-
where near the equilibrium point x = b in Figure 4.11. Its total energy has to be
greater than U (b) and could, for example, equal the value shown as E in that fig-
ure. If the object happens to be on the right of » and moving toward the right, its
PE will increase and its KE must therefore decrease until the object reaches the
turning point labeled ¢, where U(c) = E and the KE is zero. At x = ¢ the object
stops and, with the force back to the left, it accelerates back toward x = b. It can-
not now stop until once again the KE is zero, and this occurs at the turning point
a, where U(a) = E and the object accelerates back to the right. Since the whole
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Figure 4.11 If an object starts out near x = b with the
energy E shown, it is trapped in the valley or “well”
between the two hills and oscillates between the turning
points at x = a and ¢ where U(x) = E and the kinetic
energy is zero.

cycle now repeats itself, we see that if the object starts out between two hills and
its energy is lower than the crest of both hills, then the object is trapped in the
valley or “well” and oscillates indefinitely between the two turning points where
Ukx)=E.

Suppose the cart again starts out between the two hills but with energy higher than
the crest of the right hill though still lower than the left. In this case, it will escape
to the right since £ > U (x) everywhere on the right, and it can never stop once it is
moving in that direction. Finally, if the energy is higher than both hills, the cart can
escape in either direction.

These considerations play an important role in many fields. An example from
molecular physics is illustrated in Figure 4.12, which shows the potential energy of a
typical diatomic molecule, such as HCI, as a function of the distance between the two
atoms. This potential energy function governs the radial motion of the hydrogen atom
(in the case of HCI) as it vibrates in and out from the much heavier chlorine atom.
The zero of energy has been chosen where the two atoms are far apart (at infinity)
and at rest. Notice that the independent variable is the interatomic distance » which,
by its definition, is always positive, 0 < r < 0o. As r — 0, the potential energy gets
very large, indicating that the two atoms repel one another when very close together
(because of the Coulomb repulsion of the nuclei). If the energy is positive (E > 0)
the H atom can escape to infinity, since there is no “hill” to trap it; the H atom can
come in from infinity, but it will stop at the turning point r = a and (in the absence of
any mechanism to take up some of its energy) it will move away to infinity again. On
the other hand, if E < 0, the H atom is trapped and will oscillate in and out between
the two turning points shown at r = b and r = d. The equilibrium separation of the
molecule is at the point shown as r = c. It is the states with £ < 0 that correspond to
what we normally regard as the HC]l molecule. To form such a molecule, two separate
atoms (with £ > 0) must come together to a separation somewhere near r = ¢, and
some process, such as emission of light, must remove enough energy to leave the two
atoms trapped with £ < 0.
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Figure 4.12 The potential energy for a typical diatomic
molecule such as HCI, plotted as a function of the distance
r between the two atoms. If E > 0, the two atoms cannot
approach closer than the turning point r = a, but they can
move apart to infinity. If E < 0, they are trapped between the
turning points at b and d and form a bound molecule. The
equilibrium separation is r = c.

Complete Solution of the Motion

A third remarkable feature of one-dimensional conservative systems is that we can —
at least in principle — use the conservation of energy to obtain a complete solution of
the motion, that is, to find the position x as a function of time . Since E =T + U (x)
is conserved, with U (x) a known function (in the context of a given problem) and E
determined by the initial conditions, we can solve for T = %m;’cz =F — U(x) and
hence for the velocity x as a function of x:

x(x)= :i:\/—z\/E — U(x). (4.56)
m

(Notice that there is an ambiguity in the sign since energy considerations cannot
determine the direction of the velocity. For this reason, the method described here
usually does not work in a truly three-dimensional problem. In one dimension, you
can almost always decide the sign of x by inspection, though you must remember to
do so.)

Knowing the velocity as a function of x, we can now find x as a function of ¢,
using separation of variables, as follows: We first rewrite the definition x = dx/dt as

dr="2.

X

[Since x = x(x), this separates the variables ¢ and x.] Next, we can integrate between
any initial and final points to give

xg
fr—t = / dx. (4.57)

X

i
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This gives the time for travel between any initial and final positions of interest. If we -
substitute for x from (4.56) (and assume, to be definite, that x is positive) then the
time to go from the initial x, at time O to an arbitrary x at time ¢ is

t = (4.58)

xo x(X’) \/_/ ,/E U(x

(As usual, I've renamed the variable of integration as x’ to avoid confusion with
the upper limit x.) The integral (4.58) depends on the particular form of U(x) in
the problem at hand. Assuming we can do the integral [and we can at least do it
numerically for any given U (x)], it gives us ¢ as a function of x. Finally we can solve
to give x as a function of ¢, and our solution is complete, as the following simple
example illustrates.

R B B

EXAMPLE 4.6 Free Fall

PR

I drop a stone from the top of a tower at time ¢ = 0. Use conservation of energy
to find the stone’s position x (measured down from the top of the tower, where
x = 0) as a function of ¢. Neglect air resistance.

The only force on the stone is gravity, which is, of course, conservative. The
corresponding potential energy is

Ux)=—mgx.

(Remember x is measured downward.) Since the stone is at rest when x = 0,
the total energy is £ = 0, and according to (4.56) the velocity is

x(x) = \/z\/E —U(x) =+/2¢gx
m

(a result that is well known from elementary kinematics). Thus

t-—/x dx'
0 X(x) \/ng g

As anticipated, this gives ¢ as a function of x, and we can solve to give the
familiar result

x = 1gt%.
This simple example, involving the gravitational potential energy U (x) =
—mgx, can be solved many different (and some simpler) ways, but the energy
method used here can be used for any potential energy function U (x). In some
cases, the integral (4.58) can be evaluated in terms of elementary functions, and
we obtain an analytic solution of the problem; for example, if U (x) = %k)c2 (as
for a mass on the end of a spring), the integral turns out to be an inverse sine
function, which implies that x oscillates sinusoidally with time, as we should
expect (see Problem 4.28). For some potential energies, the integral cannot be
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done in terms of elementary functions, but can nonetheless be related to func-
tions that are tabulated (see Problem 4.38). For some problems, the only way to
do the 1ntegral (4.58) is to do it numerically.

T e

4.7 Curvilinear One-Dimensional Systems

So far the only one-dimensional system I have discussed is an object constrained to
move along a linear path, with position specified by the coordinate x. There are other,
more general, systems that can equally be said to be one-dimensional, inasmuch as
their position is specified by a single number. An example of such a one-dimensional
system is a bead threaded on a curved rigid wire as illustrated in Figure 4.13. (Another
is aroller coaster confined to a curved track.) The position of the bead can be specified
by a single parameter, which we can choose as the distance s, measured along the wire,
from a chosen origin O. With this choice of coordinate, the discussion of the curved
one-dimensional track parallels closely that of the straight track, as I now show.

The coordinate s of our bead corresponds, of course, to x for a cart on a straight
track. The speed of the bead is easily seen to be s, and the kinetic energy is therefore
just

T = %m&z
as compared to the familiar lmx? for the straight track. The force is a little more
complicated. As our bead moves on the curved wire the net normal force is not zero;
on the contrary, the normal force is what constrains the bead to follow its assigned
curving path. (For this reason, the normal force is called the force of constraint.) On
the other hand, the normal force does no work, and it is the tangential component

Fiang of the net force that is our chief concern. In particular, it is fairly easy to show
(Problem 4.32) that

Ftang =ms

O\S/ \

Figure 4.13 An object constrained to move on a curved
track can be considered to be a one-dimensional system,
with the position specified by the distance s (measured
along the track) of the object from an origin O. The system
shown is a bead threaded on a stiff wire, bent into a double
loop-the-loop.
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(just as F, = mX on a straight track). Further, if all the forces on the bead that have
a tangential component are conservative, we can define a corresponding potential
energy U (s) such that Fi,,, = —dU /ds, and the total mechanical energy E = T +
U (s) is constant. The whole discussion of Section 4.6 can now be applied to the bead
on a curved wire (or any other object constrained to move on a one-dimensional path).
In particular, those points where U () is a minimum are points of stable equilibrium,
and those where U (s) is maximum are points of unstable equilibrium.

There are many systems that appear to be much more complicated than the bead
on a wire, but are nonetheless one-dimensional and can be treated in much the same
way. Here is an example.

EXAMPLE 4.7 Stability of a Cube Balanced on a Cylinder

A hard rubber cylinder of radius r is held fixed with its axis horizontal, and
a wooden cube of side 2b is balanced on top of the cylinder, with its center
vertically above the cylinder’s axis and four of its sides parallel to the axis. The
cube cannot slip on the rubber of the cylinder, but it can of course rock from
side to side, as shown in Figure 4.14. By examining the cube’s potential energy,
find out if the equilibrium with the cube centered above the cylinder is stable or
unstable.

Let us first note that the system is one-dimensional, since its position as it
rocks from side to side can be specified by a single coordinate, for instance the
angle 6 through which it has turned. (We could also specify it by the distance s
of the cube’s center from equilibrium, but the angle is a little more convenient.
Either way the system’s position is specified by a single coordinate, and our
problem is definitely one-dimensional.) The constraining forces are the normal

Figure 4.14 A cube, of side 2b and center C, is
placed on a fixed horizontal cylinder of radius r and
center O. It is originally put so that C is centered
above O, but it can roll from side to side without

slipping.
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and frictional forces of the cylinder on the cube; that is, these two forces
constrain the cube to move only as shown in Figure 4.14. Since neither of these
does any work we need not consider them explicitly. The only other force on the
cube is gravity, and we know from elementary physics that this is conservative
and that the gravitational potential energy is the same as for a point mass at the
center of the cube; thatis, U = mgh, where h is the height of C above the origin,
as shown in Figure 4.14. (See Problem 4.6.) The length of the line shown as OB
is just r + b, while the length BC is the distance the cube has rolled around the
cylinder, namely 6. Therefore h = (r 4+ b) cos + r6 sin6 and the potential
energy 1S

U) =mgh =mg[(r + b)cosb 4 rf sinb]. (4.59)

To find the equilibrium position (or positions) we must find the points where
dU /d6 vanishes. (Strictly speaking I haven’t proved this very plausible claim
yet for this kind of constrained system; I’ll discuss it shortly.) The derivative is
easily seen to be (check this for yourself)

dUu
— = mg[ré cosf — bsinb].
10 8l ]
This vanishes at 6 = 0, confirming the obvious —that 6 = 0 is a point of
equilibrium. To decide whether this equilibrium is stable, we have only to
differentiate again and find the value of d>U/d6? at the equilibrium position.
This gives (as you should check)
d*U
— =mg(r — b 4.60
—oy =mg(r = b) (4.60)
(at & = 0). If the cube is smaller than the cylinder (that is, b < r), this second
derivative is positive, which means that U(6) has a minimum at 6 = 0 and the
equilibrium is stable; if the cube is balanced on the cylinder, it will remain there
indefinitely. On the other hand, if the cube is larger than the cylinder (b > r), the
second derivative (4.60) is negative, the equilibrium is unstable, and the smallest
disturbance will cause the cube to roll and fall off the cylinder.

B G S e S e e e e ]

Further Generalizations

There are many other, more complicated systems that are still legitimately described
as one dimensional. Such systems may comprise several bodies, but the bodies are
joined by struts or strings in such a way that just one parameter is needed to describe
the system’s position. An example of such a system is the Atwood machine shown in
Figure 4.15, which consists of two masses, m; and m,, suspended from opposite ends
of a massless, inextensible string that passes over a frictionless pulley. (To simplify
_the discussion, I shall assume the pulley is massless, although it is easy to allow for
a mass of the pulley.) The two masses can move up and down, but the forces of the
pulley on the string and the string on the masses constrain matters so that the mass
m, can move up only to the extent that m; moves down by exactly the same distance.
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Figure4.15 An Atwood machine consisting of two masses,
m, and m,, suspended by a massless inextensible string
that passes over a massless, frictionless pulley. Because the
string’s length is fixed, the position of the whole system is
specified by the distance x of m below any convenient fixed
level. The forces on the two masses are their weights m g
and m, g, and the tension forces Fy (which are equal since
the pulley and string are massless).

Thus the position of the whole system can be specified by a single parameter, for
example the height x of m, below the pulley’s center as shown, and the system is
again one-dimensional.’

Let us consider the energies of the masses m; and m,. The forces acting on
them are gravity and the tension in the string. Since gravity is conservative, we can
introduce potential energies U, and U, for the gravitational forces, and our previous
considerations imply that in any displacement of the system,

AT, + AU, = W{e“ 4.61)
and

AT, + AU, = W (4.62)

where the terms W'" denote the work done by the tension on m; and m,. Now, in
the absence of friction, the tension is the same all along the string. Thus, although
the tension certainly does work on the two individual masses, the work done on m is
equal and opposite to that done on m,, when m; moves down and m, moves an equal
distance up (or vice versa). That is,

W = —wien, (4.63)

% You may object, correctly, that the masses can also move sideways. If this worries you, we can
thread each mass over a vertical frictionless rod, but these rods are actually unnecessary: As long as
we refrain from pushing the masses sideways, each will remain in a vertical line of its own accord.
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Thus, if we add the two energy equations (4.61) and (4.62), the terms involving the
tension in the string cancel and we are left with

A(Tl + U1+ T2+ Uz) =0
That is, the total mechanical energy
E=T+U,+T,+U, (4.64)

is conserved. The beauty of this result is that all reference to the constraining forces
of the string and pulley has disappeared.

It turns out that many systems which contain several particles that are constrained
in some way (by strings, struts, or a track on which they must move, etc.) can be treated
in this same way: The constraining forces are crucially important in determining
how the system moves, but they do no work on the system as a whole. Thus in
considering the total energy of the system, we can simply ignore the constraining
forces. In particular, if all other forces are conservative (as with our example of the
Atwood machine), we can define a potential energy U, for each particle «, and the
total energy

N
E = Z(Ta + Ua)

a=l1

is constant. If the system is also one-dimensional (position specified by just one
parameter, as with the Atwood machine), then all of the considerations of Section
4.6 apply.

A careful discussion of constrained systems is far easier in the Lagrangian formula-
tion of mechanics than in the Newtonian. Thus I shall postpone any further discussion
to Chapter 7. In particular, the proof that a stable equilibrium normally corresponds
to a minimum of the potential energy (for a large class of constrained systems) is
sketched in Problem 7.47.

4.8 Central Forces

A three-dimensional situation that has some of the simplicity of one-dimensional
problems is a particle that is subject to a central force, that is, a force that is everywhere
directed toward or away from a fixed “force center.” If we take the force center to be
the origin, a central force has the form

F(r) = f(r)r (4.65)

where the function f(r) gives the magnitude of the force (and is positive if the force
is outward and negative if it is inward). An example of a central force is the Coulomb
force on a charge ¢ due to a second charge Q at the origin; this has the familiar form

F(r) = —/r, (4.66)
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which is obviously an example of (4.65), with the magnitude function given by
f(r) = kg Q/r%. The Coulomb force has two additional properties not shared by all
central forces: First, as we have proved, it is conservative. Second, it is spherically
symmetric or rotationally invariant; that is, the magnitude function f(r) in (4.65)
is independent of the direction of r and, hence, has the same value at all points at
the same distance from the origin. A compact way to express this second property of
spherical symmetry is to observe that the magnitude function f(r) depends only on
the magnitude of the vector r and not its direction, so can be written as

fr) = f(r). ‘ (4.67)

A remarkable feature of central forces is that the two properties just mentioned
always go together: A central force that is conservative is automatically spherically
symmetric, and, conversely, a central force that is spherically symmetric is automati-
cally conservative. These two results can be proved in several ways, but the most direct
proofs involve the use of spherical polar coordinates. Therefore, before offering any
proofs, I shall briefly review the definition of these coordinates.

Spherical Polar Coordinates

The position of any point P is, of course, identified by the vector r pointing from the
origin O to P. The vector r can be specified by its Cartesian coordinates (x, y, z),
but in problems involving spherical symmetry it is almost always more convenient to
specify r by its spherical polar coordinates (r, 6, ¢), as defined in Figure 4.16. The
first coordinate r is just the distance of P from the origin; thatis, r = |r|, as usual. The
angle 6 is the angle between r and the z axis. The angle ¢, often called the azimuth,
is the angle from the x axis to the projection of r on the xy plane, as shown.!? It is
a simple exercise (Problem 4.40) to relate the Cartesian coordinates (x, y, z) to the
polar coordinates (r, 8, ¢) and vice versa. For example, by inspecting Figure 4.16 you
should be able to convince yourself that

X =rsinf cosg, y =rsinfsing, and z=rcosf. (4.68)

A beautiful use of spherical coordinates, which may help you to visualize them,
is to specify positions on the surface of the earth. If we choose the origin at the center
of the earth, then all points on the surface have the same value of r, namely the radius
of the earth.!! Thus positions on the surface can be specified by giving just the two
angles (6, ¢). If we choose our z axis to coincide with the north polar axis, then it is
easy to see from Figure 4.16 that 0 gives the latitude of the point P, measured down
from the north pole. (Since latitude is traditionally measured up from the equator, our
angle 6 is often called the colatitude.) Similarly, ¢ is the longitude measured east from
the meridian of the x axis.

10 You should be aware that, while the definitions given here are those always used by physicists,
most mathematics texts reverse the roles of 8 and ¢.

1 Actually the earth isn’t perfectly spherical, so r isn’t quite constant, but this doesn’t change
the conclusion that any position on the surface can be specified by giving 6 and ¢.
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Figure 4.16 The spherical polar coordinates (r, 9, ¢) of a
point P are defined so that r is the distance of P from the
origin, 6 is the angle between the line OP and the z axis,
and ¢ is the angle of the line OQ from the x axis, where
Q is the projection of P onto the xy plane.

The statement that a function f (r) is spherically symmetric is simply the statement
that, with r expressed in spherical polars, f is independent of 6 and ¢. This is what
we mean when we write f(r) = f(r), and the test for spherical symmetry is simply
that the two partial derivatives df/06 and df/0¢ are both zero everywhere.

The unit vectors T, 9, and (}S are defined in the usual way: First, r is the unit vector
pointing in the direction of movement if r increases with 6 and ¢ fixed. Thus, as shown
in Figure 4.17, the vector t points radially outward, and is just the unit vector in the
direction of r as usual. (On the surface of the earth, T points upward, in the direction
of the local vertical.) Similarly, ] points in the direction of increasing € with r and ¢
fixed, that is, southward along a line of longitude. Finally, qAS points in the direction of
increasing ¢ with r and 6 fixed, that is, eastward along a circle of latitude.

Since the three unit vectors F, 6, and (}S are mutually perpendicular, we can evaluate
dot products in spherical polars in just the same way as in Cartesians. Thus, if

a=a,f + a0+ a¢(;3
and

b= b, + byd + by
then (make sure you see this)

a- b = arbr + aebe + a¢b¢. (469)

A

Like the unit vectors of two-dimensional polar coordinates, the unit vectors t, 6,
and ¢ vary with position, and, as was the case in two dimensions, this variability
complicates many calculations involving differentiation, as we shall now see.
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Chapter 4 Energy

The Gradient in Spherical Polar Coordinates

In Cartesian coordinates, we have seen that the components of V f are precisely the
partial derivatives of f with respect to x, y, and z,

.0 .0 N
Vf:x—f —|—y—f —i—zgi, (4.70)
0x dy 0z
The corresponding expression for V f in polar coordinates is not so straightforward.

To find it, recall from (4.35) that, in a small displacement dr, the change in any
function f(r) is

df =Vf .dr. 4.71)

To evaluate the small vector dr in polar coordinates, we must examine carefully what
happens to the point r when we change r, 6, and ¢: A small change dr in r moves
the point a distance dr radially out, in the direction of r. As you can see from Figure
4.17, a small change d6 in 6 moves the point around a circle of longitude (radius r)
through a distance r d6 in the direction of 9. (Note well the factor of r — the distance
is not just d6.) Similarly, a small change d¢ in ¢ moves the point around a circle of
latitude (radius r sin 6) through a distance r sin 6 d¢. Putting all this together, we see
that

dr =drt+rdfé+rsinddo ¢.

Knowing the components of dr, we can now evaluate the dot product in (4.71) in
terms of the unknown components of V£,

df = (Vf),dr + (Vf)grd6 + (Vf),rsin6dg. 4.72)
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Figure 4.17 The three unit vectors of spherical polar co-
ordinates at the point P. The vector F points radially out,
é points “south” a